IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8490-d971956.html
   My bibliography  Save this article

Thermal Response Measurement and Performance Evaluation of Borehole Heat Exchangers: A Case Study in Kazakhstan

Author

Listed:
  • Tangnur Amanzholov

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Abzal Seitov

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Abdurashid Aliuly

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Yelnar Yerdesh

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Mohanraj Murugesan

    (Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore 641032, India)

  • Olivier Botella

    (Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France)

  • Michel Feidt

    (Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France)

  • Hua Sheng Wang

    (School of Engineering and Materials Sciences, Queen Mary University of London, London E1 4NS, UK)

  • Yerzhan Belyayev

    (Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
    Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

  • Amankeldy Toleukhanov

    (Department of Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan)

Abstract

The purpose of the present work was to determine the thermal performance of borehole heat exchangers, considering the influences of their geometric configurations and the thermophysical properties of the soil, grout and pipe wall material. A three-dimensional model was developed for the heat and mass transfer in soil (a porous medium) and grout, together with one-dimensional conductive heat transfer through the pipe walls and one-dimensional convective heat transfer of the heat transfer fluid circulating in the pipes. An algorithm was developed to solve the mathematical equations of the model. The COMSOL Multiphysics software was used to implement the algorithm and perform the numerical simulations. An apparatus was designed, installed and tested to implement the thermal response test (TRT) method. Two wells of depth 50 m were drilled in the Almaty region in Kazakhstan. Gravel and till/loam were mainly found, which are in accordance with the stratigraphic map of the local geological data. In each well, two borehole heat exchangers were installed, which were an integral part of the ground source heat pump. The TRT measurements were conducted using one borehole heat exchanger in one well and the data were obtained. The present TRT data were found to be in good agreement with those available in literature. The numerical results of the model agreed well with the present TRT data, with the root-mean-square-deviation within 0.184 °C. The TRT data, together with the predictions of the line-source analytical model, were utilized to determine the soil thermal conductivity ( λ g = 2.35 W/m K) and the thermal resistance of the borehole heat exchanger from the heat transfer fluid to the soil ( R b = 0.20 m K/W). The model was then used to predict the efficiencies of the borehole heat exchangers with various geometric configurations and dimensions. The simulation results show that the spiral borehole heat exchanger extracts the highest amount of heat, followed by the multi-tube, double U-type parallel, double U-type cross and single U-type. It is also found that the spiral configuration can save 34.6% drilling depth compared with the conventional single U-type one, suggesting that the spiral configuration is the best one in terms of the depth and the maximum heat extracted. The simulation results showed that (i) more heat was extracted with a higher thermal conductivity of grout material, in the range of 0.5–3.3 W/m K; (ii) the extracted heat remained unchanged for a thermal conductivity of pipe material higher than 2.0 W/m K (experiments in the range of 0.24–0.42 W/m K); (iii) the extracted heat remained unchanged for a volumetric flow rate of water higher than 1.0 m 3 /h (experimental flow rate 0.6 m 3 /h); and (iv) the heat extracted by the borehole heat exchanger increased with an increase in the thermal conductivity of the soil (experiments in the range of 0.4–6.0 W/m K). The numerical tool developed, the TRT data and simulation results obtained from the present work are of great value for design and optimization of borehole heat exchangers as well as studying other important factors such as the heat transfer performance during charging/discharging, freezing factor and thermal interference.

Suggested Citation

  • Tangnur Amanzholov & Abzal Seitov & Abdurashid Aliuly & Yelnar Yerdesh & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Yerzhan Belyayev & Amankeldy Toleukhanov, 2022. "Thermal Response Measurement and Performance Evaluation of Borehole Heat Exchangers: A Case Study in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8490-:d:971956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Max Hesselbrandt & Mikael Erlström & Daniel Sopher & Jose Acuna, 2021. "Multidisciplinary Approaches for Assessing a High Temperature Borehole Thermal Energy Storage Facility at Linköping, Sweden," Energies, MDPI, vol. 14(14), pages 1-29, July.
    2. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Stefano Morchio & Marco Fossa & Antonella Priarone & Alessia Boccalatte, 2021. "Reduced Scale Experimental Modelling of Distributed Thermal Response Tests for the Estimation of the Ground Thermal Conductivity," Energies, MDPI, vol. 14(21), pages 1-15, October.
    4. Jin Luo & Yuhao Zhang & Jiasheng Tuo & Wei Xue & Joachim Rohn & Sebastian Baumgärtel, 2020. "A Novel Approach to the Analysis of Thermal Response Test (TRT) with Interrupted Power Input," Energies, MDPI, vol. 13(19), pages 1-14, September.
    5. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    6. Peng Li & Peng Guan & Jun Zheng & Bin Dou & Hong Tian & Xinsheng Duan & Hejuan Liu, 2020. "Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger," Energies, MDPI, vol. 13(20), pages 1-19, October.
    7. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Changlong Wang & Qiang Fu & Han Fang & Jinli Lu, 2022. "Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    9. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    10. Sang, Jingmeng & Liu, Xin & Liang, Chuanzhi & Feng, Guohui & Li, Zonghan & Wu, Xiuhui & Song, Mengmeng, 2022. "Differences between design expectations and actual operation of ground source heat pumps for green buildings in the cold region of northern China," Energy, Elsevier, vol. 252(C).
    11. Christopher Vella & Simon Paul Borg & Daniel Micallef, 2020. "The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(3), pages 1-16, January.
    12. Sang Mu Bae & Yujin Nam & Jong Min Choi & Kwang Ho Lee & Jae Sang Choi, 2019. "Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test," Energies, MDPI, vol. 12(4), pages 1-16, February.
    13. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    14. Nicolò Giordano & Louis Lamarche & Jasmin Raymond, 2021. "Evaluation of Subsurface Heat Capacity through Oscillatory Thermal Response Tests," Energies, MDPI, vol. 14(18), pages 1-26, September.
    15. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Pedro Carrasco García & Luis Santiago Sánchez Pérez & Diego González-Aguilera, 2017. "Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger," Energies, MDPI, vol. 10(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    4. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    5. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    6. Joanna Piotrowska-Woroniak & Tomasz Szul & Grzegorz Woroniak, 2023. "Application of a Model Based on Rough Set Theory (RST) for Estimating the Temperature of Brine from Vertical Ground Heat Exchangers (VGHE) Operated with a Heat Pump—A Case Study," Energies, MDPI, vol. 16(20), pages 1-12, October.
    7. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    8. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    9. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    10. Adel Eswiasi & Phalguni Mukhopadhyaya, 2021. "Performance of Conventional and Innovative Single U-Tube Pipe Configuration in Vertical Ground Heat Exchanger (VGHE)," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    11. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    12. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    13. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    14. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    15. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    16. Borja Badenes & Miguel Ángel Mateo Pla & Teresa Magraner & Javier Soriano & Javier F. Urchueguía, 2020. "Theoretical and Experimental Cost–Benefit Assessment of Borehole Heat Exchangers (BHEs) According to Working Fluid Flow Rate," Energies, MDPI, vol. 13(18), pages 1-29, September.
    17. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    18. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    19. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    20. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8490-:d:971956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.