IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p856-d1337665.html
   My bibliography  Save this article

Geothermal Resource Exploration in Reshi Town by Integrated Geophysical Methods

Author

Listed:
  • Ijaz Ahmed

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

  • Haifei Liu

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    Key Laboratory of Nonferrous Resources and Geological Hazard Detection of Hunan Province, Central South University, Changsha 410083, China)

  • Rujun Chen

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China
    Key Laboratory of Nonferrous Resources and Geological Hazard Detection of Hunan Province, Central South University, Changsha 410083, China)

  • Jawad Ahmad

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

  • Shahid Ali Shah

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

  • Shah Fahad

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

  • Osama Abdul Rahim

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

  • Farid Ullah

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

  • Li Rui

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China)

Abstract

Geothermal resources are a sustainable and valuable source of energy that offers considerable economic and social advantages. The present investigation centers on the accessibility of geothermal reservoirs in Reshi Town, Taoyuan County, Changde City, located in the Hunan Province of China. Geophysical exploration techniques are of paramount importance in the identification and exploration of geothermal resources. The present investigation utilized an integrated geophysical approach that incorporates induced polarization (IP), magnetotelluric (MT), and joint profile techniques. The primary objective of this study was to examine the distribution of formation lithology, subsurface electrical structures, karst fracture development zones, and the location and occurrence of deep and large thermal reservoirs in Reshi Town, Changde City. The research encompassed a comprehensive process that included the collection of data, its subsequent interpretation, inversion, and validation through drilling. The joint profile approach provided comprehensive data on fault structures within the study region. Using magnetotelluric sounding, areas with lower electrical resistance were found along lines L2, L3, and L4. This showed that thermal water reservoirs were underground. The induced polarization sounding method exhibited a distinct response to geothermal water, including minerals, suggesting the presence of a high-temperature geothermal reservoir, along line 1. Drilling operations carried out at two different locations, ZK01 on line L3 and ZK02 on line L4, confirmed the existence of underground hot water. The drilling findings have verified the existence of faults F3 and F4, which act as important channels for geothermal fluids. The present research offers a dependable geophysical foundation for the forthcoming development of geothermal resources in Reshi Town, and areas with similar geological conditions.

Suggested Citation

  • Ijaz Ahmed & Haifei Liu & Rujun Chen & Jawad Ahmad & Shahid Ali Shah & Shah Fahad & Osama Abdul Rahim & Farid Ullah & Li Rui, 2024. "Geothermal Resource Exploration in Reshi Town by Integrated Geophysical Methods," Energies, MDPI, vol. 17(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:856-:d:1337665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    2. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    3. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    4. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    6. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    8. Yang, Bo & Swe, Thidar & Chen, Yixuan & Zeng, Chunyuan & Shu, Hongchun & Li, Xin & Yu, Tao & Zhang, Xiaoshun & Sun, Liming, 2021. "Energy cooperation between Myanmar and China under One Belt One Road: Current state, challenges and perspectives," Energy, Elsevier, vol. 215(PB).
    9. Hu, Zixu & Xu, Tianfu & Feng, Bo & Yuan, Yilong & Li, Fengyu & Feng, Guanhong & Jiang, Zhenjiao, 2020. "Thermal and fluid processes in a closed-loop geothermal system using CO2 as a working fluid," Renewable Energy, Elsevier, vol. 154(C), pages 351-367.
    10. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    11. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    12. Liang Cheng & Zhaolong Ge & Binwei Xia & Qian Li & Jiren Tang & Yugang Cheng & Shaojie Zuo, 2018. "Research on Hydraulic Technology for Seam Permeability Enhancement in Underground Coal Mines in China," Energies, MDPI, vol. 11(2), pages 1-19, February.
    13. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    14. Wu, Bisheng & Zhang, Guangqing & Zhang, Xi & Jeffrey, Robert G. & Kear, James & Zhao, Tongtiegang, 2017. "Semi-analytical model for a geothermal system considering the effect of areal flow between dipole wells on heat extraction," Energy, Elsevier, vol. 138(C), pages 290-305.
    15. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    16. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    17. Milanović Pešić, Ana & Brankov, Jovana & Denda, Stefan & Bjeljac, Željko & Micić, Jasna, 2022. "Geothermal energy in Serbia – Current state, utilization and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Olasolo, P. & Juárez, M.C. & Morales, M.P. & Olasolo, A. & Agius, M.R., 2018. "Analysis of working fluids applicable in Enhanced Geothermal Systems: Nitrous oxide as an alternative working fluid," Energy, Elsevier, vol. 157(C), pages 150-161.
    19. Ghaebi, Hadi & Yari, Mortaza & Gargari, Saeed Ghavami & Rostamzadeh, Hadi, 2019. "Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen," Renewable Energy, Elsevier, vol. 130(C), pages 87-102.
    20. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:856-:d:1337665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.