IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp1010-1021.html
   My bibliography  Save this article

Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery

Author

Listed:
  • Ramadan, Mohamad
  • Murr, Rabih
  • Khaled, Mahmoud
  • Olabi, Abdul Ghani

Abstract

To reduce the carbon dioxide foot print, it is unescapable to adopt an energy policy that incorporates simultaneously renewable energy systems as well as smart energy strategies such as heat recovery. In the frame of this view, a heat recovery approach is suggested. The heat is recovered from drain water. It is then utilized to enhance the performance of heat pump within two schemes. Directly by replacing the ambient air heating the evaporator and indirectly by preheating the air heated by the condenser. The suggested approach is a numerical and experimental method that, on one hand, relies on experiments to determine the temperature of the drain water and on the other hand, it uses an iterative procedure to solve the energy balance equation and the mass balance equation. To that end an in-house code is developed. It allows to evaluate the heat efficiency of the heat recovery system as well as the performance of the heat pump. It has been shown that using such system may enhance the Coefficient of Performance up to 400%. In addition, economic and environmental studies are performed to assess the economic and environmental impact of the proposed techniques.

Suggested Citation

  • Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:1010-1021
    DOI: 10.1016/j.energy.2018.01.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830104X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    2. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    3. Shimbar, Ali & Ebrahimi, Seyed Babak, 2017. "The application of DNPV to unlock foreign direct investment in waste-to-energy in developing countries," Energy, Elsevier, vol. 132(C), pages 186-193.
    4. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    5. Hachem, Farouk & Abdulhay, Bakri & Ramadan, Mohamad & El Hage, Hicham & El Rab, Mostafa Gad & Khaled, Mahmoud, 2017. "Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance," Renewable Energy, Elsevier, vol. 107(C), pages 567-575.
    6. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    7. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    8. Dong, Jiankai & Zhang, Zhuo & Yao, Yang & Jiang, Yiqiang & Lei, Bo, 2015. "Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water," Applied Energy, Elsevier, vol. 154(C), pages 842-850.
    9. Ozlu, Sinan & Dincer, Ibrahim, 2016. "Performance assessment of a new solar energy-based multigeneration system," Energy, Elsevier, vol. 112(C), pages 164-178.
    10. Tomić, Tihomir & Dominković, Dominik Franjo & Pfeifer, Antun & Schneider, Daniel Rolph & Pedersen, Allan Schrøder & Duić, Neven, 2017. "Waste to energy plant operation under the influence of market and legislation conditioned changes," Energy, Elsevier, vol. 137(C), pages 1119-1129.
    11. Zou, Changfu & Hu, Xiaosong & Wei, Zhongbao & Tang, Xiaolin, 2017. "Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control," Energy, Elsevier, vol. 141(C), pages 250-259.
    12. Fanning, Tim & Jones, Calvin & Munday, Max, 2014. "The regional employment returns from wave and tidal energy: A Welsh analysis," Energy, Elsevier, vol. 76(C), pages 958-966.
    13. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    14. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    15. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    16. Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
    17. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    18. Milanese, Marco & Tornese, Ljuba & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Numerical method for wind energy analysis applied to Apulia Region, Italy," Energy, Elsevier, vol. 128(C), pages 1-10.
    19. Smaoui, Mariem & Krichen, Lotfi, 2016. "Control, energy management and performance evaluation of desalination unit based renewable energies using a graphical user interface," Energy, Elsevier, vol. 114(C), pages 1187-1206.
    20. Zhou, Bin & Xu, Da & Chan, Ka Wing & Li, Canbing & Cao, Yijia & Bu, Siqi, 2017. "A two-stage framework for multiobjective energy management in distribution networks with a high penetration of wind energy," Energy, Elsevier, vol. 135(C), pages 754-766.
    21. Liu, Lanbin & Fu, Lin & Jiang, Yi, 2010. "Application of an exhaust heat recovery system for domestic hot water," Energy, Elsevier, vol. 35(3), pages 1476-1481.
    22. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    23. Yildirim, Nurdan & Genc, Seda, 2015. "Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy," Energy, Elsevier, vol. 90(P1), pages 987-996.
    24. Liu, Lanbin & Fu, Lin & Zhang, Shigang, 2014. "The design and analysis of two exhaust heat recovery systems for public shower facilities," Applied Energy, Elsevier, vol. 132(C), pages 267-275.
    25. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    26. Ekpeni, Leonard E.N. & Benyounis, K.Y. & Nkem-Ekpeni, Fehintola F. & Stokes, J. & Olabi, A.G., 2015. "Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph)," Energy, Elsevier, vol. 81(C), pages 74-83.
    27. Poran, A. & Tartakovsky, L., 2017. "Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high-pressure thermochemical recuperation system," Energy, Elsevier, vol. 124(C), pages 214-226.
    28. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    2. Guo, Xiaochao & Ma, Zhixian & Ma, Liangdong & Zhang, Jili, 2019. "Experimental study on the performance of a novel in–house heat pump water heater with freezing latent heat evaporator and assisted by domestic drain water," Applied Energy, Elsevier, vol. 235(C), pages 442-450.
    3. Meilani Devi Utami, 2022. "Factors influencing the carbon emissions disclosure in basic and chemical industrial companies listed on the IDX in 2016-2019," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 11(9), pages 193-204, December.
    4. Liu, Long & Wang, Mingqing & Chen, Yu, 2019. "A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump," Energy, Elsevier, vol. 171(C), pages 170-179.
    5. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    6. Marenco-Porto, Carlos A. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Evaluation of Organic Rankine Cycle alternatives for the cement industry using Analytic Hierarchy Process (AHP) methodology and energy-economic-environmental (3E) analysis," Energy, Elsevier, vol. 281(C).
    7. Guo, Xiaochao & Ma, Zhixian & Zhang, Jili, 2020. "Performance analysis of a novel integrated home energy system with freezing latent heat collection," Applied Energy, Elsevier, vol. 264(C).
    8. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    9. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    10. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    11. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    12. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    2. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    3. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    4. Jaber, Hassan & Khaled, Mahmoud & Lemenand, Thierry & Murr, Rabih & Faraj, Jalal & Ramadan, Mohamad, 2019. "Domestic thermoelectric cogeneration drying system: Thermal modeling and case study," Energy, Elsevier, vol. 170(C), pages 1036-1050.
    5. Morales-Ruiz, S. & Rigola, J. & Oliet, C. & Oliva, A., 2016. "Analysis and design of a drain water heat recovery storage unit based on PCM plates," Applied Energy, Elsevier, vol. 179(C), pages 1006-1019.
    6. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    7. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    8. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    9. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    10. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    11. Abdur Rehman Mazhar & Shuli Liu & Ashish Shukla, 2018. "A Key Review of Non-Industrial Greywater Heat Harnessing," Energies, MDPI, vol. 11(2), pages 1-34, February.
    12. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2018. "Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations," Energy, Elsevier, vol. 145(C), pages 38-51.
    13. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.
    14. Yazicioglu, Hasan & Tunc, K.M. Murat & Ozbek, Muammer & Kara, Tolga, 2016. "Simulation of electricity generation by marine current turbines at Istanbul Bosphorus Strait," Energy, Elsevier, vol. 95(C), pages 41-50.
    15. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    16. Rivera-Lugo, Yazmín Y. & Salazar-Gastélum, Moisés I. & López-Rosas, Deisly M. & Reynoso-Soto, Edgar A. & Pérez-Sicairos, Sergio & Velraj, Samgopiraj & Flores-Hernández, José R. & Félix-Navarro, Rosa M, 2018. "Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications," Energy, Elsevier, vol. 148(C), pages 561-570.
    17. Zhang, Dongwei & Gao, Zhao & Fang, Chenglei & Shen, Chao & Li, Hang & Qin, Xiang, 2022. "Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat," Energy, Elsevier, vol. 253(C).
    18. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    19. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    20. Mustapha Mukhtar & Victor Adebayo & Nasser Yimen & Olusola Bamisile & Emmanuel Osei-Mensah & Humphrey Adun & Qinxiu Zhang & Gexin Luo, 2022. "Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems," Sustainability, MDPI, vol. 14(9), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:1010-1021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.