IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v2y2009i3p697-713d5633.html
   My bibliography  Save this article

Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source

Author

Listed:
  • Ali Kahraman

    (Technical Education Faculty, Mechanical Education Department, Selçuk University, 42003, Konya, Turkey)

  • Alaeddin Çelebi

    (Technical Science Vocational High School, Selçuk University, 42003, Konya, Turkey)

Abstract

In this research, a water-water heat pump system using waste water as a heat source, a type that is not often used in Turkey and the World, was experimentally modeled. The experiments were performed under the conditions of simulated waste water temperature values of 20 °C, 30 °C and 40 °C. Inlet and outlet water temperatures of the evaporator and condenser, water flow rates in the evaporator and condenser circuits, pressures at the compressor inlet and outlet and power consumption of the system were measured. The heating coefficients of performance were calculated based on the measurements. It was found that the maximum temperature in the energy storage tank was about 50.6 °C. For the heat source temperatures of 20 °C, 30 °C and 40 °C, the heating coefficients of the performance of the system became 3.36, 3.43 and 3.69, respectively, 6 min. after the start time of the experiments and then they were decreased to 1.87, 1.83 and 1.77 with increasing water temperature in the condenser tank. The mean uncertainty value of the measurement parameters was found to be about ±2.47%. Finally, for the purpose of meeting hot water need as well as floor heating system requirements, it is seen that energy quality level of a waste low grade temperature heat source can be increased by using a heat pump system.

Suggested Citation

  • Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:2:y:2009:i:3:p:697-713:d:5633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/2/3/697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/2/3/697/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Büyükalaca, O. & Ekinci, F. & Yılmaz, T., 2003. "Experimental investigation of Seyhan River and dam lake as heat source–sink for a heat pump," Energy, Elsevier, vol. 28(2), pages 157-169.
    2. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    3. Ahmad, Tanveer & Chen, Huanxin & Shair, Jan, 2018. "Water source heat pump energy demand prognosticate using disparate data-mining based approaches," Energy, Elsevier, vol. 152(C), pages 788-803.
    4. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    5. Weisong Zhou & Peng Pei & Dingyi Hao & Chen Wang, 2020. "A Numerical Study on the Performance of Ground Heat Exchanger Buried in Fractured Rock Bodies," Energies, MDPI, vol. 13(7), pages 1-17, April.
    6. Wu, Qiang & Tu, Kun & Sun, Haizhou & Chen, Chaofan, 2019. "Investigation on the sustainability and efficiency of single-well circulation (SWC) groundwater heat pump systems," Renewable Energy, Elsevier, vol. 130(C), pages 656-666.
    7. Tomasz Łokietek & Wojciech Tuchowski & Dorota Leciej-Pirczewska & Anna Głowacka, 2022. "Heat Recovery from a Wastewater Treatment Process—Case Study," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Florian Kretschmer & Georg Neugebauer & Gernot Stoeglehner & Thomas Ertl, 2018. "Participation as a Key Aspect for Establishing Wastewater as a Source of Renewable Energy," Energies, MDPI, vol. 11(11), pages 1-17, November.
    9. Chen, Chaofan & Cai, Wanlong & Naumov, Dmitri & Tu, Kun & Zhou, Hongwei & Zhang, Yuping & Kolditz, Olaf & Shao, Haibing, 2021. "Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating," Renewable Energy, Elsevier, vol. 169(C), pages 557-572.
    10. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    11. Fernando Illán-Gómez & José Ramón García-Cascales & Francisco Javier Sánchez-Velasco & Ramón A. Otón-Martínez, 2022. "Evaluation of the Use of Different Dedicated Mechanical Subcooling (DMS) Strategies in a Water Source Transcritical CO 2 Heat Pump for Space Heating Applications," Clean Technol., MDPI, vol. 4(4), pages 1-19, November.
    12. Dong, Jiankai & Zhang, Zhuo & Yao, Yang & Jiang, Yiqiang & Lei, Bo, 2015. "Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water," Applied Energy, Elsevier, vol. 154(C), pages 842-850.
    13. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    14. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    15. Reiners, Tobias & Gross, Michel & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Heat pump efficiency in fifth generation ultra-low temperature district heating networks using a wastewater heat source," Energy, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    2. Gaudard, Adrien & Wüest, Alfred & Schmid, Martin, 2019. "Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials," Renewable Energy, Elsevier, vol. 134(C), pages 330-342.
    3. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    4. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    5. Nord, Natasa & Qvistgaard, Live Holmedal & Cao, Guangyu, 2016. "Identifying key design parameters of the integrated energy system for a residential Zero Emission Building in Norway," Renewable Energy, Elsevier, vol. 87(P3), pages 1076-1087.
    6. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    7. Sakr, Mohamed & Liu, Shuli, 2014. "A comprehensive review on applications of ohmic heating (OH)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 262-269.
    8. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    9. Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    11. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    12. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    13. Zhang, H.-F. & Ge, X.-S. & Ye, H., 2007. "Modeling of a space heating and cooling system with seasonal energy storage," Energy, Elsevier, vol. 32(1), pages 51-58.
    14. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    15. Linas Gelažanskas & Kelum A. A. Gamage, 2016. "Distributed Energy Storage Using Residential Hot Water Heaters," Energies, MDPI, vol. 9(3), pages 1-13, February.
    16. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    17. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    18. Paya-Marin, Miguel A. & Roy, Krishanu & Chen, Jian-Fei & Masood, Rehan & Lawson, R. Mark & Gupta, Bhaskar Sen & Lim, James B.P., 2020. "Large-scale experiment of a novel non-domestic building using BPSC systems for energy saving," Renewable Energy, Elsevier, vol. 152(C), pages 799-811.
    19. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    20. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:2:y:2009:i:3:p:697-713:d:5633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.