IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4874-d854541.html
   My bibliography  Save this article

Review of Gas Engine Heat Pumps

Author

Listed:
  • Bartosz Pawela

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Kraków, Poland
    Frapol Ltd., 30-832 Kraków, Poland)

  • Marek Jaszczur

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Kraków, Poland)

Abstract

In this paper the most promising developments of technology for gas engine-driven heat pumps for the last 15 years are presented. The purpose is to present the latest research studies and changes in this type of device, as well as to help readers to search for publications containing relevant aspects of gas engine heat pumps. Gas engine-driven heat pumps are devices for parallel heating and cooling production based on compressor heat pump technology. However, unlike heat pumps with compressors powered by electric motors, gas engine-driven heat pumps are driven by gas internal combustion engines. The reviewed solutions are an interesting alternative to traditional heating systems, characterized by the higher than 1.0 Performance Energy Ratio which expresses the degree of conversion of the energy contained in the fuel supplied to the device into energy transported to the utility needs. Presented in this review, papers show different solutions for conversion of the energy contained in the fuel into mechanical and thermal energy, and mechanical energy through the shaft system is used to drive the compressor of the heat pump. The presented study shows that, due to the complexity of the system and the wide range of applications, the technology has been subjected to detailed analyses and optimizations during the last 30 years in order to increase the efficiency of devices.

Suggested Citation

  • Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4874-:d:854541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    2. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    3. Wang, Jieyue & Cai, Liang & Wang, Yanwei & Ma, Yanbin & Zhang, Xiaosong, 2013. "Modeling and optimization matching on drive system of a coaxial parallel-type hybrid-power gas engine heat pump," Energy, Elsevier, vol. 55(C), pages 1196-1204.
    4. Elgendy, E. & Schmidt, J., 2010. "Experimental study of gas engine driven air to water heat pump in cooling mode," Energy, Elsevier, vol. 35(6), pages 2461-2467.
    5. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2010. "Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications," Energy, Elsevier, vol. 35(12), pages 4941-4948.
    6. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    7. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Modelling and validation of a gas engine heat pump working with R410A for cooling applications," Applied Energy, Elsevier, vol. 88(12), pages 4980-4988.
    8. Zhao, Yang & Shigang, Zhang & Haibe, Zhao, 2003. "Optimization study of combined refrigeration cycles driven by an engine," Applied Energy, Elsevier, vol. 76(4), pages 379-389, December.
    9. Chen, Tao & Cai, Liang & Wen, Xiantai & Zhang, Xiaosong, 2021. "Experimental research and energy consumption analysis on the economic performance of a hybrid-power gas engine heat pump with LiFePO4 battery," Energy, Elsevier, vol. 214(C).
    10. Sanaye, Sepehr & Chahartaghi, Mahmood, 2010. "Thermal modeling and operating tests for the gas engine-driven heat pump systems," Energy, Elsevier, vol. 35(1), pages 351-363.
    11. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Performance of a gas engine driven heat pump for hot water supply systems," Energy, Elsevier, vol. 36(5), pages 2883-2889.
    12. Yang, Zhao & Cheng, Heng & Wu, Xi & Chen, Yiguang, 2011. "Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP," Energy Policy, Elsevier, vol. 39(9), pages 5192-5202, September.
    13. Hepbasli, Arif & Erbay, Zafer & Icier, Filiz & Colak, Neslihan & Hancioglu, Ebru, 2009. "A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 85-99, January.
    14. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    2. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    3. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Modelling and validation of a gas engine heat pump working with R410A for cooling applications," Applied Energy, Elsevier, vol. 88(12), pages 4980-4988.
    4. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    5. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2010. "Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications," Energy, Elsevier, vol. 35(12), pages 4941-4948.
    6. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    7. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Performance of a gas engine driven heat pump for hot water supply systems," Energy, Elsevier, vol. 36(5), pages 2883-2889.
    8. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    9. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    10. Chen, Tao & Cai, Liang & Wen, Xiantai & Zhang, Xiaosong, 2021. "Experimental research and energy consumption analysis on the economic performance of a hybrid-power gas engine heat pump with LiFePO4 battery," Energy, Elsevier, vol. 214(C).
    11. Sheykhi, Mohammad & Chahartaghi, Mahmood & Safaei Pirooz, Amir Ali & Flay, Richard G.J., 2020. "Investigation of the effects of operating parameters of an internal combustion engine on the performance and fuel consumption of a CCHP system," Energy, Elsevier, vol. 211(C).
    12. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    13. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
    14. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    15. Fatouh, M. & Elgendy, E., 2011. "Experimental investigation of a vapor compression heat pump used for cooling and heating applications," Energy, Elsevier, vol. 36(5), pages 2788-2795.
    16. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    17. Qingkun Meng & Liang Cai & Wenxiu Ji & Jie Yan & Tao Zhang & Xiaosong Zhang, 2015. "Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump," Energies, MDPI, vol. 8(10), pages 1-22, October.
    18. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    19. Hervás-Blasco, Estefanía & Navarro-Peris, Emilio & Corberán, José Miguel, 2019. "Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source," Energy, Elsevier, vol. 188(C).
    20. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4874-:d:854541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.