IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp1102-1116.html
   My bibliography  Save this article

Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers

Author

Listed:
  • Ibrahim, Oussama
  • Fardoun, Farouk
  • Younes, Rafic
  • Louahlia-Gualous, Hasna

Abstract

This paper presents a dynamic simulation model to predict the performance of an ASHPWH (air source heat pump water heater). The developed model is used to assess its performance in the Lebanese context. It is shown that for the four Lebanese climatic zones, the expected monthly values of the average COP (coefficient of performance) varies from 2.9 to 5, leading to high efficiencies compared with conventional electric water heaters. The energy savings and GHG (greenhouse gas) emissions reduction are investigated for each zone. Furthermore, it is recommended to use the ASHPWH during the period of highest daily ambient temperatures (noon or afternoon), assuming that the electricity tariff and hot water loads are constant. In addition, an optimal management model for the ASHPWH is developed and applied for a typical winter day of Beirut. Moreover, the developed dynamic model of ASHPWH is used to compare the performance of three similar systems that differ only with the condenser geometry, where results show that using mini-condenser geometries increase the COP (coefficient of performance) and consequently, more energy is saved as well as more GHG emissions are reduced. In addition, the condenser “surface compactness” is increased giving rise to an efficient compact heat exchanger.

Suggested Citation

  • Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:1102-1116
    DOI: 10.1016/j.energy.2013.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213009791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwon, Ohkyung & Cha, Dongan & Park, Chasik, 2013. "Performance evaluation of a two-stage compression heat pump system for district heating using waste energy," Energy, Elsevier, vol. 57(C), pages 375-381.
    2. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Hua, Jun, 2010. "Modeling and simulating the transcritical CO2 heat pump system," Energy, Elsevier, vol. 35(12), pages 4812-4818.
    3. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2013. "Energy status in Lebanon and electricity generation reform plan based on cost and pollution optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 255-278.
    4. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    5. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna & Ghandour, Mazen, 2013. "Multi-variable optimization for future electricity-plan scenarios in Lebanon," Energy Policy, Elsevier, vol. 58(C), pages 49-56.
    6. Yokoyama, Ryohei & Shimizu, Takeshi & Ito, Koichi & Takemura, Kazuhisa, 2007. "Influence of ambient temperatures on performance of a CO2 heat pump water heating system," Energy, Elsevier, vol. 32(4), pages 388-398.
    7. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    8. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    9. Shimoda, Yoshiyuki & Okamura, Tomo & Yamaguchi, Yohei & Yamaguchi, Yukio & Taniguchi, Ayako & Morikawa, Takao, 2010. "City-level energy and CO2 reduction effect by introducing new residential water heaters," Energy, Elsevier, vol. 35(12), pages 4880-4891.
    10. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    11. Moreno-Rodríguez, A. & González-Gil, A. & Izquierdo, M. & Garcia-Hernando, N., 2012. "Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications," Energy, Elsevier, vol. 45(1), pages 704-715.
    12. Kong, X.Q. & Zhang, D. & Li, Y. & Yang, Q.M., 2011. "Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 36(12), pages 6830-6838.
    13. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    14. World Bank, 2009. "Lebanon - Social Impact Analysis : Electricity and Water Sectors," World Bank Publications - Reports 18890, The World Bank Group.
    15. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    16. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le, Khoa Xuan & Huang, Ming Jun & Wilson, Christopher & Shah, Nikhilkumar N. & Hewitt, Neil J., 2020. "Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment," Applied Energy, Elsevier, vol. 257(C).
    2. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    3. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    4. Nyers, Jozsef & Garbai, Laszlo & Nyers, Arpad, 2015. "A modified mathematical model of heat pump's condenser for analytical optimization," Energy, Elsevier, vol. 80(C), pages 706-714.
    5. Jia, Jie & Lee, W.L., 2015. "Experimental study of the application of intermittently operated SEHRAC (storage-enhanced heat recovery room air-conditioner) in residential buildings in Hong Kong," Energy, Elsevier, vol. 83(C), pages 628-637.
    6. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    7. Li, Yongcai & Li, Wuyan & Liu, Zongsheng & Lu, Jun & Zeng, Liyue & Yang, Lulu & Xie, Ling, 2017. "Theoretical and numerical study on performance of the air-source heat pump system in Tibet," Renewable Energy, Elsevier, vol. 114(PB), pages 489-501.
    8. Yingfeng Xiang & Mingwen Shi & Chuanzhen Li & Chao Zhu & Yifan Cao & Yangda Chen & Weijun Wu & Yapeng Li & Xuxin Guo & Xianpeng Sun, 2022. "Active Air-Source Heat Storage and Release System for Solar Greenhouses: Design and Performance," Energies, MDPI, vol. 16(1), pages 1-13, December.
    9. Dengxin Ai & Ke Xu & Heng Zhang & Tianheng Chen & Guilin Wang, 2022. "Simulation Research on a Cogeneration System of Low-Concentration Photovoltaic/Thermal Coupled with Air-Source Heat Pump," Energies, MDPI, vol. 15(3), pages 1-25, February.
    10. Roberto Barrella & Irene Priego & José Ignacio Linares & Eva Arenas & José Carlos Romero & Efraim Centeno, 2020. "Feasibility Study of a Centralised Electrically Driven Air Source Heat Pump Water Heater to Face Energy Poverty in Block Dwellings in Madrid (Spain)," Energies, MDPI, vol. 13(11), pages 1-23, May.
    11. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    12. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Cheng, Jianlin & Li, Shengbing, 2016. "Study on the dynamic and thermal performances of a reversibly used cooling tower with upward spraying," Energy, Elsevier, vol. 96(C), pages 268-277.
    13. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    14. Youxin Zhou & Bin Peng & Bingguo Zhu, 2023. "Assessment of Optimal Operating Range and Case Verification of a Waste Heat Air-Source Heat Pump Water Heater Based on a Semiempirical Parametric Model," Energies, MDPI, vol. 16(5), pages 1-16, February.
    15. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).
    16. Guo, Xiaofeng & Goumba, Alain Pascal, 2018. "Air source heat pump for domestic hot water supply: Performance comparison between individual and building scale installations," Energy, Elsevier, vol. 164(C), pages 794-802.
    17. Zou, Deqiu & Ma, Xianfeng & Liu, Xiaoshi & Zheng, Pengjun & Cai, Baiming & Huang, Jianfeng & Guo, Jiangrong & Liu, Mo, 2017. "Experimental research of an air-source heat pump water heater using water-PCM for heat storage," Applied Energy, Elsevier, vol. 206(C), pages 784-792.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    2. Li, Fenglei & Chang, Zhao & Li, Xinchang & Tian, Qi, 2018. "Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle," Energy, Elsevier, vol. 165(PB), pages 419-431.
    3. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    4. Baek, Changhyun & Heo, Jaehyeok & Jung, Jongho & Cho, Honghyun & Kim, Yongchan, 2014. "Performance characteristics of a two-stage CO2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions," Energy, Elsevier, vol. 77(C), pages 570-578.
    5. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    6. Shi, Guo-Hua & Aye, Lu & Li, Dan & Du, Xian-Jun, 2019. "Recent advances in direct expansion solar assisted heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 349-366.
    7. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    8. Li, Yongcai & Li, Wuyan & Liu, Zongsheng & Lu, Jun & Zeng, Liyue & Yang, Lulu & Xie, Ling, 2017. "Theoretical and numerical study on performance of the air-source heat pump system in Tibet," Renewable Energy, Elsevier, vol. 114(PB), pages 489-501.
    9. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    10. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    11. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
    12. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    13. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    14. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    15. Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
    16. Wessam El-Baz & Peter Tzscheutschler & Ulrich Wagner, 2018. "Experimental Study and Modeling of Ground-Source Heat Pumps with Combi-Storage in Buildings," Energies, MDPI, vol. 11(5), pages 1-19, May.
    17. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    18. Moreno-Rodriguez, A. & Garcia-Hernando, N. & González-Gil, A. & Izquierdo, M., 2013. "Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating," Energy, Elsevier, vol. 60(C), pages 242-253.
    19. Khorasaninejad, Ehsan & Hajabdollahi, Hassan, 2014. "Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm," Energy, Elsevier, vol. 72(C), pages 680-690.
    20. Livio de Santoli & Gianluigi Lo Basso & Davide Astiaso Garcia & Giuseppe Piras & Giulia Spiridigliozzi, 2019. "Dynamic Simulation Model of Trans-Critical Carbon Dioxide Heat Pump Application for Boosting Low Temperature Distribution Networks in Dwellings," Energies, MDPI, vol. 12(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:1102-1116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.