IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp1041-1048.html
   My bibliography  Save this article

System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector

Author

Listed:
  • Laimon, Mohamd
  • Mai, Thanh
  • Goh, Steven
  • Yusaf, Talal

Abstract

Sustainable development of the inherently complex nature of the energy sector requires a comprehensive understanding of its components and their dynamic interactions. In this study, we employ a system dynamics approach to examine the impact of renewable energy systems and energy efficiency on the performance of the energy sector, and apply this, as a case study example, to the Australian energy sector. Our results show that improving only 1% of energy efficiency would result in 101k/331k GWh energy productivity (5% and 14% of total energy consumption) and reduce domestic CO2 emissions by 15.3/50 Mt CO2-e (4% and 10% of total domestic emissions) by 2030/2050. Switching to renewable energy for transportation and therefore saving 5% per year of current oil consumption may decrease dependency on oil to half by 2030 and to zero by 2050, and reduce domestic CO2 emissions by 74.1/198 Mt CO2-e (18% and 41% of total domestic emissions). Switching to renewable electricity by 3% annually may lead to 60.8/129 Mt CO2-e reduction in domestic CO2 emissions (15% and 27% of total domestic emissions) by 2030/2050. Electrification of other sectors, mainly the manufacturing sector, increasing the use of renewable energy by 4% annually, may lead to 43.3/106 Mt CO2-e reduction in domestic CO2 emissions (11% and 22% of total domestic emissions) by 2030/2050. Improving energy efficiency, switching to renewable energy for transportation, switching to renewable electricity, electrification of sectors that do not currently run on electricity with the use of renewable energy could achieve zero domestic CO2 emissions by 2050 while energy consumption stays almost stable (0.5%/year). This process may be accelerated by improving energy efficiency by more than 1%.

Suggested Citation

  • Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1041-1048
    DOI: 10.1016/j.renene.2022.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200684X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    2. Kumar Narayan, Paresh & Narayan, Seema & Popp, Stephan, 2010. "Energy consumption at the state level: The unit root null hypothesis from Australia," Applied Energy, Elsevier, vol. 87(6), pages 1953-1962, June.
    3. Lin, Chiun-Sin & Liou, Fen-May & Huang, Chih-Pin, 2011. "Grey forecasting model for CO2 emissions: A Taiwan study," Applied Energy, Elsevier, vol. 88(11), pages 3816-3820.
    4. Barlas, Yaman, 1989. "Multiple tests for validation of system dynamics type of simulation models," European Journal of Operational Research, Elsevier, vol. 42(1), pages 59-87, September.
    5. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    6. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    7. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    8. Yi-Ming Wei & Gang Wu & Ying Fan & Lan-Cui Liu, 2006. "Progress in energy complex system modelling and analysis," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 25(1/2), pages 109-128.
    9. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    10. Muhammad Shahbaz & Mita Bhattacharya & Khalid Ahmed, 2017. "CO emissions in Australia: economic and non-economic drivers in the long-run," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1273-1286, March.
    11. Mai, Thanh & Mushtaq, Shahbaz & Loch, Adam & Reardon-Smith, K. & An-Vo, Duc-Anh, 2019. "A systems thinking approach to water trade: Finding leverage for sustainable development," Land Use Policy, Elsevier, vol. 82(C), pages 595-608.
    12. Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
    13. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    14. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    15. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    16. Kornelis Blok, 2004. "Improving Energy Efficiency by Five Percent and More per Year?," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 87-99, October.
    17. Talal Yusaf & Louis Fernandes & Abd Rahim Abu Talib & Yazan S. M. Altarazi & Waleed Alrefae & Kumaran Kadirgama & Devarajan Ramasamy & Aruna Jayasuriya & Gordon Brown & Rizalman Mamat & Hayder Al Dhah, 2022. "Sustainable Aviation—Hydrogen Is the Future," Sustainability, MDPI, vol. 14(1), pages 1-17, January.
    18. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    19. Narayan, Paresh Kumar & Smyth, Russell, 2005. "Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests," Energy Policy, Elsevier, vol. 33(9), pages 1109-1116, June.
    20. Giovanna Morelli & Marco Mele, 2020. "Energy Consumption, CO2 and Economic Growth Nexus in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 443-449.
    21. Yi Zuo & Ying-ling Shi & Yu-zhuo Zhang, 2017. "Research on the Sustainable Development of an Economic-Energy-Environment (3E) System Based on System Dynamics (SD): A Case Study of the Beijing-Tianjin-Hebei Region in China," Sustainability, MDPI, vol. 9(10), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    3. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    4. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    5. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    6. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    8. Dmitry Burakov, 2019. "Are Oil Shocks Permanent or Temporary? Panel Data Evidence from Crude Oil Production in 15 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 295-298.
    9. Wajahat Ali & Inam Ur Rahman & Muhammad Zahid & Muhammad Anees Khan & Tafazal Kumail, 2020. "Do technology and structural changes favour environment in Malaysia: an ARDL-based evidence for environmental Kuznets curve," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7927-7950, December.
    10. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    11. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    12. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    13. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    14. Emre Yakut & Ezel Özkan, 2020. "Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 59-78, June.
    15. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    16. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    17. Muhammad Zeeshan & Jiabin Han & Alam Rehman & Hazrat Bilal & Naveed Farooq & Muhammad Waseem & Arif Hussain & Muhammad Khan & Ilyas Ahmad, 2021. "Nexus between Foreign Direct Investment, Energy Consumption, Natural Resource, and Economic Growth in Latin American Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 407-416.
    18. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2020. "The Environmental Kuznets Curve across Australian states and territories," Energy Economics, Elsevier, vol. 90(C).
    19. Mason, Karl & Duggan, Jim & Howley, Enda, 2018. "Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks," Energy, Elsevier, vol. 155(C), pages 705-720.
    20. Tajudeen, Ibrahim A. & Wossink, Ada & Banerjee, Prasenjit, 2018. "How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 200-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1041-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.