IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics036054421932434x.html
   My bibliography  Save this article

Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant

Author

Listed:
  • Chen, Heng
  • Qi, Zhen
  • Dai, Lihao
  • Li, Bin
  • Xu, Gang
  • Yang, Yongping

Abstract

An innovative design of combustion air preheating for large-scale coal-fueled power plants was proposed. Differing from the conventional air preheating system using a rotary regenerative air preheater, a cascade heating concept is adopted in the new configuration, where the air obtains heat from the feedwater, circulating water and flue gas in several tubular heat exchangers, which significantly diminishes the air leakages and the exergy destruction. The results of a detailed thermodynamic analysis show that, for a typical 1000 MW coal-fueled power plant, the net thermal efficiency increment can reach 0.49% points with a net heat rate reduction of 86.77 kJ/kWh, if the novel air preheating design is adopted instead of the conventional one. This is because the exergy efficiency of the air preheating process is promoted from 77.88% to 91.77% owing to the proposal, and the total exergy efficiency of the power plant rises by 0.48% points. The economic performance of the new design was examined as well, indicating that the dynamic payback period is only 5.30 years when the proposed air preheating system is employed to replace the conventional one. This work may be beneficial for enhancing the air preheating system and advancing coal-fired power production.

Suggested Citation

  • Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s036054421932434x
    DOI: 10.1016/j.energy.2019.116739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932434X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    2. Wang, Hong Yue & Zhao, Ling Ling & Zhou, Qiang Tai & Xu, Zhi Gao & Kim, Hyung Taek, 2008. "Exergy analysis on the irreversibility of rotary air preheater in thermal power plant," Energy, Elsevier, vol. 33(4), pages 647-656.
    3. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    4. Maharaj, Avinash & Schmitz, Walter & Naidoo, Reshendren, 2015. "A numerical study of air preheater leakage," Energy, Elsevier, vol. 92(P1), pages 87-99.
    5. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    6. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    7. Zeng, M. & Du, L.X. & Liao, D. & Chu, W.X. & Wang, Q.W. & Luo, Y. & Sun, Y., 2012. "Investigation on pressure drop and heat transfer performances of plate-fin iron air preheater unit with experimental and Genetic Algorithm methods," Applied Energy, Elsevier, vol. 92(C), pages 725-732.
    8. Zheng, D. & Uchiyama, Y. & Ishida, M., 1986. "Energy-utilization diagrams for two types of LNG power-generation systems," Energy, Elsevier, vol. 11(6), pages 631-639.
    9. Wang, Maojian & Liu, Guilian & Hui, Chi Wai, 2017. "Novel shortcut optimization model for regenerative steam power plant," Energy, Elsevier, vol. 138(C), pages 529-541.
    10. Xu, Cheng & Xin, Tuantuan & Xu, Gang & Li, Xiaosa & Liu, Wenyi & Yang, Yongping, 2017. "Thermodynamic analysis of a novel solar-hybrid system for low-rank coal upgrading and power generation," Energy, Elsevier, vol. 141(C), pages 1737-1749.
    11. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    12. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    13. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    14. Zhao, Zhigang & Su, Sheng & Si, Ningning & Hu, Song & Wang, Yi & Xu, Jun & Jiang, Long & Chen, Gang & Xiang, Jun, 2017. "Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant," Energy, Elsevier, vol. 119(C), pages 540-548.
    15. Yang, Mei & Liu, Chao, 2017. "The calculation of fluorine plastic economizer in economy by using the equivalent heat drop," Energy, Elsevier, vol. 135(C), pages 674-684.
    16. Jin, Hongguang & Zhao, Hongbin & Liu, Zelong & Cai, Ruixian, 2004. "A novel EFHAT system and exergy analysis with energy utilization diagram," Energy, Elsevier, vol. 29(12), pages 1983-1991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
    2. Maciej Dzikuć & Piotr Kuryło & Rafał Dudziak & Szymon Szufa & Maria Dzikuć & Karolina Godzisz, 2020. "Selected Aspects of Combustion Optimization of Coal in Power Plants," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    4. Xue, Xiaojun & Lu, Di & Liu, Yifan & Chen, Heng & Pan, Peiyuan & Xu, Gang & Zhou, Zunkai & Dong, Yuehong, 2023. "Thermodynamic and economic analysis of new compressed air energy storage system integrated with water electrolysis and H2-Fueled solid oxide fuel cell," Energy, Elsevier, vol. 263(PE).
    5. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    2. Stevanovic, Vladimir D. & Petrovic, Milan M. & Wala, Tadeusz & Milivojevic, Sanja & Ilic, Milica & Muszynski, Slawomir, 2019. "Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation," Energy, Elsevier, vol. 187(C).
    3. Li, Yong & Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Han, Wei, 2018. "Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater," Energy, Elsevier, vol. 149(C), pages 639-661.
    4. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    5. Han, Yu & Sun, Yingying & Wu, Junjie, 2023. "A novel solar-driven waste heat recovery system in solar-fuel hybrid power plants," Energy, Elsevier, vol. 285(C).
    6. Braimakis, Konstantinos & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Εnergy-exergy analysis of ultra-supercritical biomass-fuelled steam power plants for industrial CHP, district heating and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 252-269.
    7. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    8. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    9. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    10. Wang, Yanhong & Zou, Zhihong & Zhao, Yuren & Li, Qi & Zhang, Zhenbin, 2024. "Online model of wellness value for terminal difference of high-pressure heater targeting status diagnosis," Energy, Elsevier, vol. 304(C).
    11. Wu, Zhicong & Xu, Gang & Ge, Shiyu & Yang, Zhenjun & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with integration of mid-temperature energy upgradation and CO2 recovery: Thermodynamic and economic analysis," Applied Energy, Elsevier, vol. 358(C).
    12. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).
    13. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    14. Wu, Zhicong & Xu, Gang & Ge, Shiyu & Liang, Shixing & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with mid-temperature energy upgradation: Thermodynamic and economic analysis," Energy, Elsevier, vol. 288(C).
    15. Han, Yu & Sun, Yingying, 2020. "Collaborative optimization of energy conversion and NOx removal in boiler cold-end of coal-fired power plants based on waste heat recovery of flue gas and sensible heat utilization of extraction steam," Energy, Elsevier, vol. 207(C).
    16. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    17. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    18. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    19. Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
    20. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s036054421932434x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.