IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v92y2015ip1p87-99.html
   My bibliography  Save this article

A numerical study of air preheater leakage

Author

Listed:
  • Maharaj, Avinash
  • Schmitz, Walter
  • Naidoo, Reshendren

Abstract

The purpose of the research is to quantify direct leakage for a Ljungström air preheater. The leak flow path was assumed to be similar to flow through an orifice and a theoretical approach was used to calculate leakage. A 2D CFD model with a geometry similar to the one considered in the theoretical approach was also developed to calculate leakage. It was noted that for the different leak gaps investigated, the theoretical calculated leakage was always lower than the CFD calculated leakage. This can be attributed to the fact that the leak gap geometry and actual orifice flow geometry are not identical. Using the 2D CFD model, the leak flow was quantified for various seal settings across the operating air temperature range.

Suggested Citation

  • Maharaj, Avinash & Schmitz, Walter & Naidoo, Reshendren, 2015. "A numerical study of air preheater leakage," Energy, Elsevier, vol. 92(P1), pages 87-99.
  • Handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:87-99
    DOI: 10.1016/j.energy.2015.06.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Mun Lee & Heeyoon Chung & Seon Ho Kim & Hyeng Sub Bae & Hyung Hee Cho, 2017. "Optimization of the Heating Element in a Gas-Gas Heater Using an Integrated Analysis Model," Energies, MDPI, vol. 10(12), pages 1-19, November.
    2. Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).
    3. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    4. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:92:y:2015:i:p1:p:87-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.