IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p1983-1991.html
   My bibliography  Save this article

A novel EFHAT system and exergy analysis with energy utilization diagram

Author

Listed:
  • Jin, Hongguang
  • Zhao, Hongbin
  • Liu, Zelong
  • Cai, Ruixian

Abstract

In this paper, a new type of gas turbine cycle has been proposed based on an innovative combination of a newly designed HAT cycle with an externally fired heater. In this manner, “dirty” fuels such as coal and biomass can be more efficiently used than before and the water in this cycle can be recycled. This is radically different from the conventional HAT cycle. In particular, the temperature of the clean humid air out of the turbine is not restricted by the dew point of gas. Hence, some amount of latent heat can be utilized to generate hot water being supplied to the humidifier. This will enhance the humidification ability for improving performance of the system. The new system is also analyzed by using the graphical exergy methodology based on energy-utilization diagrams (EUDs). As a result, for a turbine inlet temperature (TIT) of 1073 K, the thermal efficiency of the new system may be as high as 45.37%. The new system will effectively recover both the energy quality and quantity at the low- and middle-temperature ranges.

Suggested Citation

  • Jin, Hongguang & Zhao, Hongbin & Liu, Zelong & Cai, Ruixian, 2004. "A novel EFHAT system and exergy analysis with energy utilization diagram," Energy, Elsevier, vol. 29(12), pages 1983-1991.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:1983-1991
    DOI: 10.1016/j.energy.2004.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204000878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Hongguang & Ishida, Masaru, 1993. "Graphical exergy analysis of complex cycles," Energy, Elsevier, vol. 18(6), pages 615-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, V.A.F., 2021. "ENERGY-EXERGY diagrams for states and energy and exergy balance equations representation," Energy, Elsevier, vol. 218(C).
    2. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    3. Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).
    4. Han, Wei & Jin, Hongguang & Xu, Wei, 2007. "A novel combined cycle with synthetic utilization of coal and natural gas," Energy, Elsevier, vol. 32(8), pages 1334-1342.
    5. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    2. Peng, Shuo & Hong, Hui & Jin, Hongguang & Wang, Zhifeng, 2012. "An integrated solar thermal power system using intercooled gas turbine and Kalina cycle," Energy, Elsevier, vol. 44(1), pages 732-740.
    3. Ming Yang & Liqiang Duan & Yongjing Tong, 2021. "Design and Performance Analysis of New Ultra-Supercritical Double Reheat Coal-Fired Power Generation Systems," Energies, MDPI, vol. 14(1), pages 1-22, January.
    4. Li, Yuanyuan & Zhou, Luyao & Xu, Gang & Fang, Yaxiong & Zhao, Shifei & Yang, Yongping, 2014. "Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant," Energy, Elsevier, vol. 74(C), pages 202-214.
    5. Han, Wei & Jin, Hongguang & Zhang, Na & Zhang, Xiaosong, 2007. "Cascade utilization of chemical energy of natural gas in an improved CRGT cycle," Energy, Elsevier, vol. 32(4), pages 306-313.
    6. Zhang, Fengming & Li, Yufeng & Jia, Cuijie & Shen, Boya, 2021. "Effect of evaporation on the energy conversion of a supercritical water oxidation system containing a hydrothermal flame," Energy, Elsevier, vol. 226(C).
    7. Gao, Lin & Li, Hongqiang & Chen, Bin & Jin, Hongguang & Lin, Rumou & Hong, Hui, 2008. "Proposal of a natural gas-based polygeneration system for power and methanol production," Energy, Elsevier, vol. 33(2), pages 206-212.
    8. Costa, V.A.F., 2021. "ENERGY-EXERGY diagrams for states and energy and exergy balance equations representation," Energy, Elsevier, vol. 218(C).
    9. Gao, Lin & Jin, Hongguang & Liu, Zelong & Zheng, Danxing, 2004. "Exergy analysis of coal-based polygeneration system for power and chemical production," Energy, Elsevier, vol. 29(12), pages 2359-2371.
    10. Zhang, Guoqiang & Li, Yuanyuan & Zhang, Na, 2017. "Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system," Energy, Elsevier, vol. 128(C), pages 152-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:1983-1991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.