IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2895-d512464.html
   My bibliography  Save this article

Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective

Author

Listed:
  • Abdelghani Bekrar

    (LAMIH, CNRS, UMR 8201, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France
    INSA Hauts-de-France, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France)

  • Abdessamad Ait El Cadi

    (LAMIH, CNRS, UMR 8201, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France
    INSA Hauts-de-France, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France)

  • Raca Todosijevic

    (LAMIH, CNRS, UMR 8201, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France
    INSA Hauts-de-France, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France)

  • Joseph Sarkis

    (Foisie Business School, Worcester Polytechnic Institute, Worcester, MA 01609, USA
    Humlog Institute, Hanken School of Economics, Arkadiankatu 22, 00100 Helsinki, Finland)

Abstract

The circular economy is gaining in importance globally and locally. The COVID-19 crisis, as an exceptional event, showed the limits and the fragility of supply chains, with circular economy practices as a potential solution during and post-COVID. Reverse logistics (RL) is an important dimension of the circular economy which allows management of economic, social, and environmental challenges. Transportation is needed for RL to effectively operate, but research study on this topic has been relatively limited. New digitalization opportunities can enhance transportation and RL, and therefore further enhance the circular economy. This paper proposes to review practical research and concerns at the nexus of transportation, RL, and blockchain as a digitalizing technology. The potential benefits of blockchain technology through example use cases on various aspects of RL and transportation activities are presented. This integration and applications are evaluated using various capability facets of blockchain technology, particularly as an immutable and reliable ledger, a tracking service, a smart contract utility, as marketplace support, and as tokenization and incentivization. We also briefly introduce the physical internet concept within this context. The physical internet paradigm proposed last decade, promises to also disrupt the blockchain, transportation, and RL nexus. We include potential research directions and managerial implications across the blockchain, transportation, and RL nexus.

Suggested Citation

  • Abdelghani Bekrar & Abdessamad Ait El Cadi & Raca Todosijevic & Joseph Sarkis, 2021. "Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2895-:d:512464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Han, Rong & Yu, Bi-Ying & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2017. "Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective," Energy Policy, Elsevier, vol. 106(C), pages 298-309.
    3. Yong Geng & Joseph Sarkis & Raimund Bleischwitz, 2019. "How to globalize the circular economy," Nature, Nature, vol. 565(7738), pages 153-155, January.
    4. Issam Laguir & Rebecca Stekelorum & Jamal El Baz, 2020. "Going green? Investigating the relationships between proactive environmental strategy, GSCM practices and performances of third-party logistics providers (TPLs)," Post-Print hal-02973132, HAL.
    5. Lenny Koh & Alexandre Dolgui & Joseph Sarkis, 2020. "Blockchain in transport and logistics – paradigms and transitions," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2054-2062, April.
    6. Mahtab Kouhizadeh & Joseph Sarkis, 2018. "Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    7. Marija Jović & Edvard Tijan & Dražen Žgaljić & Saša Aksentijević, 2020. "Improving Maritime Transport Sustainability Using Blockchain-Based Information Exchange," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    8. Qiu, Yuzhuo & Ni, Ming & Wang, Liang & Li, Qinqin & Fang, Xuanjing & Pardalos, Panos M., 2018. "Production routing problems with reverse logistics and remanufacturing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 87-100.
    9. Xuanjing Fang & Yanan Du & Yuzhuo Qiu, 2017. "Reducing Carbon Emissions in a Closed-Loop Production Routing Problem with Simultaneous Pickups and Deliveries under Carbon Cap-and-Trade," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    10. Bing Wang & Weiyang Liu & Min Wang & Wangping Shen, 2020. "Research on Bidding Mechanism for Power Grid with Electric Vehicles Based on Smart Contract Technology," Energies, MDPI, vol. 13(2), pages 1-17, January.
    11. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    12. Tarik Chargui & Abdelghani Bekrar & Mohamed Reghioui & Damien Trentesaux, 2019. "Multi-Objective Sustainable Truck Scheduling in a Rail–Road Physical Internet Cross-Docking Hub Considering Energy Consumption," Sustainability, MDPI, vol. 11(11), pages 1-23, June.
    13. Yiqiang Zhang & Hussam Alshraideh & Ali Diabat, 2018. "A stochastic reverse logistics production routing model with environmental considerations," Annals of Operations Research, Springer, vol. 271(2), pages 1023-1044, December.
    14. Dev, Navin K. & Shankar, Ravi & Swami, Sanjeev, 2020. "Diffusion of green products in industry 4.0: Reverse logistics issues during design of inventory and production planning system," International Journal of Production Economics, Elsevier, vol. 223(C).
    15. Xiao-shuai Peng & Shou-feng Ji & Ting-ting Ji, 2020. "Promoting sustainability of the integrated production-inventory-distribution system through the Physical Internet," International Journal of Production Research, Taylor & Francis Journals, vol. 58(22), pages 6985-7004, November.
    16. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    17. Bumho Son & Jaewook Lee & Huisu Jang, 2020. "A Scalable IoT Protocol via an Efficient DAG-Based Distributed Ledger Consensus," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    18. Mehrdokht Pournader & Yangyan Shi & Stefan Seuring & S.C. Lenny Koh, 2020. "Blockchain applications in supply chains, transport and logistics: a systematic review of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2063-2081, April.
    19. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    20. Shuang, Yan & Diabat, Ali & Liao, Yi, 2019. "A stochastic reverse logistics production routing model with emissions control policy selection," International Journal of Production Economics, Elsevier, vol. 213(C), pages 201-216.
    21. Li, Ling & Wang, Bin & Cook, David P., 2014. "Enhancing green supply chain initiatives via empty container reuse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 190-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Böhmecke‐Schwafert & Marie Wehinger & Robin Teigland, 2022. "Blockchain for the circular economy: Theorizing blockchain's role in the transition to a circular economy through an empirical investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3786-3801, December.
    2. Andrea Ferrari & Giulio Mangano & Anna Corinna Cagliano & Alberto De Marco, 2023. "4.0 technologies in city logistics: an empirical investigation of contextual factors," Operations Management Research, Springer, vol. 16(1), pages 345-362, March.
    3. Mohammad Nabipour & M. Ali Ülkü, 2021. "On Deploying Blockchain Technologies in Supply Chain Strategies and the COVID-19 Pandemic: A Systematic Literature Review and Research Outlook," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    4. Nishant Saravanan & Jessica Olivares-Aguila & Alejandro Vital-Soto, 2022. "Bibliometric and Text Analytics Approaches to Review COVID-19 Impacts on Supply Chains," Sustainability, MDPI, vol. 14(23), pages 1-33, November.
    5. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
    6. Victor Hugo Souza De Abreu & Mariane Gonzalez Da Costa & Valeria Xavier Da Costa & Tassia Faria De Assis & Andrea Souza Santos & Marcio de Almeida D’Agosto, 2022. "The Role of the Circular Economy in Road Transport to Mitigate Climate Change and Reduce Resource Depletion," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    7. Victoria Akberdina & Wadim Strielkowski & Natalia Linder & Sergey Kashirin & Lyudmila Shmeleva, 2023. "Information Technology and Digital Sufficiency for Building the Sustainable Circular Economy," Energies, MDPI, vol. 16(3), pages 1-14, January.
    8. Oana Marin & Tudor Cioara & Ionut Anghel, 2023. "Blockchain Solution for Buildings’ Multi-Energy Flexibility Trading Using Multi-Token Standards," Future Internet, MDPI, vol. 15(5), pages 1-17, May.
    9. Jacob Lohmer & Elias Ribeiro da Silva & Rainer Lasch, 2022. "Blockchain Technology in Operations & Supply Chain Management: A Content Analysis," Sustainability, MDPI, vol. 14(10), pages 1-88, May.
    10. Yasanur Kayikci & Nazlican Gozacan‐Chase & Abderahman Rejeb & Kaliyan Mathiyazhagan, 2022. "Critical success factors for implementing blockchain‐based circular supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3595-3615, November.
    11. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    12. Monrudee Theeraworawit & Suparak Suriyankietkaew & Philip Hallinger, 2022. "Sustainable Supply Chain Management in a Circular Economy: A Bibliometric Review," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    13. Li-Lun & Liu & Yao-Jen & Su, 2022. "Digital Transformation and Strategic Analysis of Human Resource Value," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    14. Aurélien Bruel & Radu Godina, 2023. "A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    15. Alessandra Neri & Marta Negri & Enrico Cagno & Simone Franzò & Vikas Kumar & Tommaso Lampertico & Carlo Andrea Bassani, 2023. "The role of digital technologies in supporting the implementation of circular economy practices by industrial small and medium enterprises," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4693-4718, November.
    16. Ashish Dwivedi & Dindayal Agrawal & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "Modeling the blockchain readiness challenges for product recovery system," Annals of Operations Research, Springer, vol. 327(1), pages 493-537, August.
    17. Lewis A. Njualem, 2022. "Leveraging Blockchain Technology in Supply Chain Sustainability: A Provenance Perspective," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    18. Abderahman Rejeb & Karim Rejeb & John G. Keogh & Suhaiza Zailani, 2022. "Barriers to Blockchain Adoption in the Circular Economy: A Fuzzy Delphi and Best-Worst Approach," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    19. Xiangyang Yu & Xiaojing Wang, 2023. "Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology," Energies, MDPI, vol. 16(6), pages 1-21, March.
    20. Wankmüller, Christian & Pulsfort, Johannes & Kunovjanek, Maximilian & Polt, Romana & Craß, Stefan & Reiner, Gerald, 2023. "Blockchain-based tokenization and its impact on plastic bottle supply chains," International Journal of Production Economics, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arim Park & Huan Li, 2021. "The Effect of Blockchain Technology on Supply Chain Sustainability Performances," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. Zakaria Chekoubi & Wajdi Trabelsi & Nathalie Sauer & Ilias Majdouline, 2022. "The Integrated Production-Inventory-Routing Problem with Reverse Logistics and Remanufacturing: A Two-Phase Decomposition Heuristic," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
    3. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    5. Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
    6. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    7. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    8. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    9. Kirti Nayal & Rakesh D. Raut & Balkrishna E. Narkhede & Pragati Priyadarshinee & Gajanan B. Panchal & Vidyadhar V. Gedam, 2023. "Antecedents for blockchain technology-enabled sustainable agriculture supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 293-337, August.
    10. Adeeb Noor, 2022. "Adoption of Blockchain Technology Facilitates a Competitive Edge for Logistic Service Providers," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    11. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    12. Tygran Dzhuguryan & Agnieszka Deja, 2021. "Sustainable Waste Management for a City Multifloor Manufacturing Cluster: A Framework for Designing a Smart Supply Chain," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    13. Yu Gong & Shenghao Xie & Deepak Arunachalam & Jiang Duan & Jianli Luo, 2022. "Blockchain‐based recycling and its impact on recycling performance: A network theory perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3717-3741, December.
    14. Arunmozhi, Manimuthu & Venkatesh, V.G. & Arisian, Sobhan & Shi, Yangyan & Raja Sreedharan, V., 2022. "Application of blockchain and smart contracts in autonomous vehicle supply chains: An experimental design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    16. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    17. Mangla, Sachin Kumar & Kazancoglu, Yigit & Ekinci, Esra & Liu, Mengqi & Özbiltekin, Melisa & Sezer, Muruvvet Deniz, 2021. "Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    18. Xue Han & Pratibha Rani, 2022. "RETRACTED ARTICLE: Evaluate the barriers of blockchain technology adoption in sustainable supply chain management in the manufacturing sector using a novel Pythagorean fuzzy-CRITIC-CoCoSo approach," Operations Management Research, Springer, vol. 15(3), pages 725-742, December.
    19. Wankmüller, Christian & Pulsfort, Johannes & Kunovjanek, Maximilian & Polt, Romana & Craß, Stefan & Reiner, Gerald, 2023. "Blockchain-based tokenization and its impact on plastic bottle supply chains," International Journal of Production Economics, Elsevier, vol. 257(C).
    20. Fairouz Mustafa & Suman Lodh & Monomita Nandy & Vikas Kumar, 2022. "Coupling of cryptocurrency trading with the sustainable environmental goals: Is it on the cards?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1152-1168, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2895-:d:512464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.