IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v5y2015i4p437-448.html
   My bibliography  Save this article

An estimation of regional emission intensity of coal mine methane based on coefficient‐intensity factor methodology using China as a case study

Author

Listed:
  • Ning Wang
  • Zongguo Wen
  • Tao Zhu

Abstract

Coal mine methane (CMM) is an important component of greenhouse gas (GHG) control, clean energy, and coal mining safety. Because of the complicated geological conditions and non‐linear characteristics of CMM emissions, the Intergovernmental Panel on Climate Change (IPCC) calculation methodology of CMM emissions is based on a large emission factor range (10–25 m-super-3/t), limiting the accuracy of the CMM emissions calculation. This paper studies CMM emission characteristics, and designs a coefficient‐intensity factor methodology integrated with IPCC methodology, to make a contribution to increase its applicability to regional circumstances. Using China as a case study, this paper uses 798 mines as samples, aiming to find a function of the relative gas emission rate and coal production. Through the calculation of the classification outflow coefficient and the regional emission intensity factor, the national emission intensity factor is about 9.176, which is lower than the minimum of IPCC emission factors for underground mining. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Ning Wang & Zongguo Wen & Tao Zhu, 2015. "An estimation of regional emission intensity of coal mine methane based on coefficient‐intensity factor methodology using China as a case study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 437-448, August.
  • Handle: RePEc:wly:greenh:v:5:y:2015:i:4:p:437-448
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1485
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    2. Gao, Ting & Lin, Wensheng & Gu, Anzhong & Gu, Min, 2010. "Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling," Applied Energy, Elsevier, vol. 87(7), pages 2142-2147, July.
    3. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    4. Wang, Lei & Cheng, Yuan-Ping, 2012. "Drainage and utilization of Chinese coal mine methane with a coal–methane co-exploitation model: Analysis and projections," Resources Policy, Elsevier, vol. 37(3), pages 315-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Tianle & Li, Fangmin & Du, Min & Huang, Miao & Li, Yinuo, 2023. "Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China," Energy, Elsevier, vol. 268(C).
    2. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    3. Wang, Ning & Ren, Yixin & Zhu, Tao & Meng, Fanxin & Wen, Zongguo & Liu, Gengyuan, 2018. "Life cycle carbon emission modelling of coal-fired power: Chinese case," Energy, Elsevier, vol. 162(C), pages 841-852.
    4. Bing Wang & Chao-Qun Cui & Yi-Xin Zhao & Bo Yang & Qing-Zhou Yang, 2019. "Carbon emissions accounting for China’s coal mining sector: invisible sources of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1345-1364, December.
    5. Liang Feng & Paul I. Palmer & Sihong Zhu & Robert J. Parker & Yi Liu, 2022. "Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    2. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    3. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    4. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    5. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    6. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    7. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    8. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    9. Qianyu Zhao & Boyu Xie & Mengyao Han, 2023. "Unpacking the Sub-Regional Spatial Network of Land-Use Carbon Emissions: The Case of Sichuan Province in China," Land, MDPI, vol. 12(10), pages 1-22, October.
    10. Guangfang Luo & Jianjun Zhang & Yongheng Rao & Xiaolei Zhu & Yiqiang Guo, 2017. "Coal Supply Chains: A Whole-Process-Based Measurement of Carbon Emissions in a Mining City of China," Energies, MDPI, vol. 10(11), pages 1-18, November.
    11. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    12. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    13. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    14. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    15. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    16. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    17. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    18. Chen, Jiandong & Gao, Ming & Mangla, Sachin Kumar & Song, Malin & Wen, Jie, 2020. "Effects of technological changes on China's carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    20. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:5:y:2015:i:4:p:437-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.