IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp273-282.html
   My bibliography  Save this article

Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty

Author

Listed:
  • Wang, Ke
  • Zhang, Jianjun
  • Cai, Bofeng
  • Yu, Shengmin

Abstract

Fugitive methane from underground coal mining is the main source of methane emissions in China. Accurate and updateable methane emission factors for underground coal mining are of great significance for the accounting of methane emissions in China. In this paper, 10,951 underground coal mines are investigated for developing an emission factor matrix for national and provincial scales. For national emission factors, 27 types of emission factors are determined according to the classification of the ownership of the enterprise, gas emission rate, and maximum mining depth. For provincial emission factors, three types of emission factors for 25 provinces are determined based on gas emission rates. Based on these metrics, this paper uses bootstrap and Monte Carlo simulations to determine the uncertainty range of different emission factors at the 95% confidence interval (CI). The results show that emission factors at the national scale ranged from 3.005 m3/t to 54.487 m3/t, with a 95% CI of 2.735 m3/t to 76.082 m3/t, and that emission factors at the provincial scale ranged from 0.58 m3/t to 56.19 m3/t, with a 95% CI of 0.347 m3/t to 108.115 m3/t. By comparison, the emission factors calculated in this paper are more representative than the default values recommended by the Intergovernmental Panel on Climate Change (IPCC). In addition, these results are more specific and updateable than those in previous studies, which lays a foundation for the future study of fugitive methane emissions from underground coal mines at different scales.

Suggested Citation

  • Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:273-282
    DOI: 10.1016/j.apenergy.2019.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    2. Yang, Ming, 2009. "Climate change and energy policies, coal and coalmine methane in China," Energy Policy, Elsevier, vol. 37(8), pages 2858-2869, August.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    5. Hui Liu & Gabriel Rodriguez, 2003. "Human Activities and Global Warming: A Cointegration Analysis," Working Papers 0307E, University of Ottawa, Department of Economics.
    6. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    7. Zhang, Bo & Chen, G.Q. & Li, J.S. & Tao, L., 2014. "Methane emissions of energy activities in China 1980–2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 11-21.
    8. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    9. Ning Wang & Zongguo Wen & Tao Zhu, 2015. "An estimation of regional emission intensity of coal mine methane based on coefficient‐intensity factor methodology using China as a case study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 437-448, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2021. "Research on Early Warning for Gas Risks at a Working Face Based on Association Rule Mining," Energies, MDPI, vol. 14(21), pages 1-19, October.
    3. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.
    4. Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
    5. Isabel Amez & David León & Alexander Ivannikov & Konstantin Kolikov & Blanca Castells, 2023. "Potential of CBM as an Energy Vector in Active Mines and Abandoned Mines in Russia and Europe," Energies, MDPI, vol. 16(3), pages 1-17, January.
    6. Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).
    7. Anyu Zhu & Qifei Wang & Dongqiao Liu & Yihan Zhao, 2022. "Analysis of the Characteristics of CH 4 Emissions in China’s Coal Mining Industry and Research on Emission Reduction Measures," IJERPH, MDPI, vol. 19(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianyu Zhao & Boyu Xie & Mengyao Han, 2023. "Unpacking the Sub-Regional Spatial Network of Land-Use Carbon Emissions: The Case of Sichuan Province in China," Land, MDPI, vol. 12(10), pages 1-22, October.
    2. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    3. Robert Baťa & Jan Fuka & Petra Lešáková & Jana Heckenbergerová, 2019. "CO 2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating," Energies, MDPI, vol. 12(20), pages 1-21, October.
    4. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    5. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    6. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    7. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    8. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    9. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    11. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    12. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    13. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    14. Guangfang Luo & Jianjun Zhang & Yongheng Rao & Xiaolei Zhu & Yiqiang Guo, 2017. "Coal Supply Chains: A Whole-Process-Based Measurement of Carbon Emissions in a Mining City of China," Energies, MDPI, vol. 10(11), pages 1-18, November.
    15. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    16. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    17. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    18. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    19. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    20. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:273-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.