IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3864-d275753.html
   My bibliography  Save this article

CO 2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating

Author

Listed:
  • Robert Baťa

    (Institute of Administrative and Social Sciences, Faculty of Economics and Administration, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic)

  • Jan Fuka

    (Institute of Administrative and Social Sciences, Faculty of Economics and Administration, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic)

  • Petra Lešáková

    (Institute of Administrative and Social Sciences, Faculty of Economics and Administration, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic)

  • Jana Heckenbergerová

    (Institute of Administrative and Social Sciences, Faculty of Economics and Administration, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic)

Abstract

This paper aims to deal with CO 2 emissions in energy production process in an original way, based on calculations of total specific CO 2 emissions, depending on the type of fuel and the transport distance. This paper has ambition to set a break point from where it is not worthwhile to use wood as an energy carrier as the alternative to coal. The reason for our study is the social urgency of selected problem. For example, in the area of public sector decision-making, wood heating is promoted regardless of the availability within the reasonable distance. From the current state of the research, it is also clear that none of the studies compare coal and biomass fuel transportation from the point of view of CO 2 production. For this purpose, an original methodology has been proposed. It is based on a modified life cycle assessment (LCA), supplemented with a system of equations. The proposed methodology has a generalizable nature, and therefore, it can be applied to different regions. However, calculation inputs and modelling are based on specific site data. Based on the presented numerical analysis, the key finding is the break point for associated processes at a distance of 1779.64 km, since when that it is better to burn brown coal than wood in terms of total CO 2 emissions. We can conclude that, in some cases, it is more efficient to use coal instead of wood as fuel in terms of CO 2 emissions, particularly in regard to transport distance and type of transport.

Suggested Citation

  • Robert Baťa & Jan Fuka & Petra Lešáková & Jana Heckenbergerová, 2019. "CO 2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating," Energies, MDPI, vol. 12(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3864-:d:275753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    2. Sedjo, ROger A., 2013. "Comparative Life Cycle Assessments: Carbon Neutrality and Wood Biomass Energy," RFF Working Paper Series dp-13-11, Resources for the Future.
    3. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    4. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    5. Weldu, Yemane W. & Assefa, Getachew & Jolliet, Olivier, 2017. "Life cycle human health and ecotoxicological impacts assessment of electricity production from wood biomass compared to coal fuel," Applied Energy, Elsevier, vol. 187(C), pages 564-574.
    6. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    7. Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
    8. Nian, Victor, 2016. "The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation," Applied Energy, Elsevier, vol. 179(C), pages 1069-1080.
    9. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    10. Tarantini, Mario & Loprieno, Arianna Dominici & Cucchi, Eleonora & Frenquellucci, Ferdinando, 2009. "Life Cycle Assessment of waste management systems in Italian industrial areas: Case study of 1st Macrolotto of Prato," Energy, Elsevier, vol. 34(5), pages 613-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Hsien Tsai, 2020. "Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset," Energies, MDPI, vol. 13(22), pages 1-7, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianyu Zhao & Boyu Xie & Mengyao Han, 2023. "Unpacking the Sub-Regional Spatial Network of Land-Use Carbon Emissions: The Case of Sichuan Province in China," Land, MDPI, vol. 12(10), pages 1-22, October.
    2. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    3. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    4. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2017. "US liquefied natural gas (LNG) exports: Boom or bust for the global climate?," Energy, Elsevier, vol. 141(C), pages 1671-1680.
    5. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    6. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    7. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    8. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    9. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    10. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    11. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    12. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    13. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    14. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    15. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    16. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    17. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    18. Mingxing Wu & Zhilin Lu & Qing Chen & Tao Zhu & En Lu & Wentian Lu & Mingbo Liu, 2020. "A Two-Stage Algorithm of Locational Marginal Price Calculation Subject to Carbon Emission Allowance," Energies, MDPI, vol. 13(10), pages 1-20, May.
    19. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    20. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3864-:d:275753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.