IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-13-11.html
   My bibliography  Save this paper

Comparative Life Cycle Assessments: Carbon Neutrality and Wood Biomass Energy

Author

Listed:
  • Sedjo, ROger A.

    (Resources for the Future)

Abstract

Biomass energy is expected to play a major role in the substitution of renewable energy sources for fossil fuels over the next several decades. The US Energy Information Administration (EIA 2012) forecasts increases in the share of biomass in US energy production from 8 percent in 2009 to 15 percent by 2035. The general view has been that carbon emitted into the atmosphere from biological materials is carbon neutral—part of a closed loop whereby plant regrowth simply recaptures the carbon emissions associated with the energy produced. Recently this view has been challenged, and the US Environmental Protection Agency (EPA) is considering regulations to be applied to biomass energy carbon emissions. A basic approach for analyses of environmental impacts has been the use of life cycle assessment (LCA), a methodology for assessing and measuring the environmental impact of a product over its lifetime—from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling. However, LCA approaches vary, and the results of alternative methodologies often differ (Helin et al. 2012). This study investigates and compares the implications of these alternative approaches for emissions from wood biomass energy, the carbon footprint, and also highlights the differences in LCA environmental impacts.

Suggested Citation

  • Sedjo, ROger A., 2013. "Comparative Life Cycle Assessments: Carbon Neutrality and Wood Biomass Energy," RFF Working Paper Series dp-13-11, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-13-11
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-13-11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
    2. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    3. Sedjo, Roger A., 2011. "Carbon Neutrality and Bioenergy: A Zero-Sum Game?," RFF Working Paper Series dp-11-15, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashkan Mirzaee & Ronald G. McGarvey & Francisco X. Aguilar & Erin M. Schliep, 2023. "Impact of biopower generation on eastern US forests," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4087-4105, May.
    2. Robert Baťa & Jan Fuka & Petra Lešáková & Jana Heckenbergerová, 2019. "CO 2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating," Energies, MDPI, vol. 12(20), pages 1-21, October.
    3. Johnston, Craig M.T. & Cornelis van Kooten, G., 2015. "Back to the past: Burning wood to save the globe," Ecological Economics, Elsevier, vol. 120(C), pages 185-193.
    4. Cho, Seolhee & Kim, Jiyong, 2015. "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea," Energy, Elsevier, vol. 85(C), pages 317-328.
    5. Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.
    6. Karolina Wojtacha-Rychter & Piotr Kucharski & Adam Smolinski, 2021. "Conventional and Alternative Sources of Thermal Energy in the Production of Cement—An Impact on CO 2 Emission," Energies, MDPI, vol. 14(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    2. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    3. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    4. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    5. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    6. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    7. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    8. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    9. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    10. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    11. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    12. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    13. May Arunanondchai, 2016. "Trade Policy and the Welfare of Southeast-Asian Timber Exporters: Some Implications for Forest Resources," EEPSEA Research Report rr2016056, Economy and Environment Program for Southeast Asia (EEPSEA), revised Apr 2016.
    14. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    15. Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
    16. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    17. Dug Man Lee & Kenneth S. Lyon, 2004. "A Dynamic Analysis of the Global Timber Market under Global Warming: An Integrated Modeling Approach," Southern Economic Journal, John Wiley & Sons, vol. 70(3), pages 467-489, January.
    18. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    19. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    20. G. Cornelis van Kooten, 2017. "The Policy Challenge of Creating Forest Offset Credits: A Case Study from the Interior of British Columbia," Working Papers 2017-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.

    More about this item

    Keywords

    life cycle assessment; carbon neutrality; biomass; bioenergy; carbon dioxide; energy; rational expectations;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-13-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.