IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i1p85-107.html
   My bibliography  Save this article

Characteristics of gas disaster in the Huaibei coalfield and its control and development technologies

Author

Listed:
  • Liang Wang
  • Yuan-ping Cheng
  • Feng-hua An
  • Hong-xing Zhou
  • Sheng-li Kong
  • Wei Wang

Abstract

The Huaibei coalfield is in the East China Economic Area, which is rich in coal and gas resources. However, hundreds of coal and gas outburst accidents have occurred because of the complex geological structures of the coalfield. Based on theoretical analysis and field statistics, the characteristics of regional geological structures and the coal measure strata evolution in the Huaibei coalfield were researched, and gas resource distribution and gas parameters were statistically analyzed to determine the dominant controlling factors of gas occurrence and gas dynamic disaster. The results indicated that the Huaibei coalfield has undergone complex tectonic evolution, causing obvious differences in gas storage in different blocks of different mining areas, which exhibits a pattern of high amounts of gas in the south and east, and low amounts of gas in the north and west. The coal seam and gas occurrence have a bipolar distribution in the coalfield caused by multiple tectonic movements, and they are deeply buried. Horizontal tectonic stress plays a dominant role in gas outburst, and the thermal evolution and trap effects of magma intrusion increase the possibility and extent of gas outburst. Considering coal seam and gas occurrence characteristics in the coalfield, we propose a new technology for deep coal reservoir reconstruction which combined present underground regional gas control methods and surface well extraction methods. The technology has three effects: developing gas resources, improving coal mining safety level and reducing greenhouse gas emissions, which has been practiced to be effective in coal mines in the Huaibei coalfield. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Liang Wang & Yuan-ping Cheng & Feng-hua An & Hong-xing Zhou & Sheng-li Kong & Wei Wang, 2014. "Characteristics of gas disaster in the Huaibei coalfield and its control and development technologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 85-107, March.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:85-107
    DOI: 10.1007/s11069-013-0901-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0901-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0901-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lei & Cheng, Yuan-Ping, 2012. "Drainage and utilization of Chinese coal mine methane with a coal–methane co-exploitation model: Analysis and projections," Resources Policy, Elsevier, vol. 37(3), pages 315-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Yiming Yang & Ting Ai & Zetian Zhang & Ru Zhang & Li Ren & Jing Xie & Zhaopeng Zhang, 2020. "Acoustic Emission Characteristics of Coal Samples under Different Stress Paths Corresponding to Different Mining Layouts," Energies, MDPI, vol. 13(12), pages 1-13, June.
    3. Ting Liu & Baiquan Lin & Quanle Zou & Chuanjie Zhu, 2016. "Microscopic mechanism for enhanced coal bed methane recovery and outburst elimination by hydraulic slotting: A case study in Yangliu mine, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 597-614, October.
    4. Xiaowei Feng & Nong Zhang & Xiaoting Chen & Lianyuan Gong & Chuangxin Lv & Yu Guo, 2016. "Exploitation Contradictions Concerning Multi-Energy Resources among Coal, Gas, Oil, and Uranium: A Case Study in the Ordos Basin (Western North China Craton and Southern Side of Yinshan Mountains)," Energies, MDPI, vol. 9(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    2. Marek Borowski & Piotr Życzkowski & Jianwei Cheng & Rafał Łuczak & Klaudia Zwolińska, 2020. "The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN," Energies, MDPI, vol. 13(17), pages 1-18, August.
    3. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    4. Uddin, Noim & Blommerde, Mascha & Taplin, Ros & Laurence, David, 2015. "Sustainable development outcomes of coal mine methane clean development mechanism Projects in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 1-9.
    5. Meybodi, Mehdi Aghaei & Behnia, Masud, 2013. "Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system," Energy Policy, Elsevier, vol. 62(C), pages 10-18.
    6. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    7. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    8. Nikodem Szlązak & Justyna Swolkień, 2021. "Possibilities of Capturing Methane from Hard Coal Deposits Lying at Great Depths," Energies, MDPI, vol. 14(12), pages 1-19, June.
    9. Shouqing Lu & Yuanping Cheng & Jinmin Ma & Yuebing Zhang, 2014. "Application of in-seam directional drilling technology for gas drainage with benefits to gas outburst control and greenhouse gas reductions in Daning coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1419-1437, September.
    10. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
    11. Ning Wang & Zongguo Wen & Tao Zhu, 2015. "An estimation of regional emission intensity of coal mine methane based on coefficient‐intensity factor methodology using China as a case study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 437-448, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:85-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.