IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6599-d1122714.html
   My bibliography  Save this article

Selecting Geological Formations for CO 2 Storage: A Comparative Rating System

Author

Listed:
  • Muhammad Hammad Rasool

    (Petroleum Geosciences Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia)

  • Maqsood Ahmad

    (Petroleum Geosciences Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia)

  • Muhammad Ayoub

    (Chemical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia)

Abstract

Underground storage of carbon dioxide (CO 2 ) in geological formations plays a vital role in carbon capture and storage (CCS) technology. It involves capturing CO 2 emissions from industrial processes and power generation and storing them underground, thereby reducing greenhouse gas emissions and curbing the impact of climate change. This review paper features a comparative analysis of CO 2 storage in deep saline aquifers, depleted reservoirs, coal seams, basaltic formations and clastic formations. The comparison has been drawn based upon seven factors carefully selected from the literature, i.e., safety, storage capacity, injection rates, efficiency, residual trapping, containment and integrity and potential to improve, and all of these factors have been rated from low (1) to high (5) based upon their individual traits. Based upon these factors, an overall M.H. rating system has been developed to categorize geological formations for CO 2 storage and it is observed that deep water aquifers and basaltic formations are the most effective options for CO 2 storage. Lastly, a detailed way forward has been suggested, which can help researchers and policymakers to find more viable ways to enhance the efficiency of CO 2 storage in various geological formations.

Suggested Citation

  • Muhammad Hammad Rasool & Maqsood Ahmad & Muhammad Ayoub, 2023. "Selecting Geological Formations for CO 2 Storage: A Comparative Rating System," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6599-:d:1122714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yueliang & Rui, Zhenhua & Yang, Tao & Dindoruk, Birol, 2022. "Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs," Applied Energy, Elsevier, vol. 311(C).
    2. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    3. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    4. Kou, Zuhao & Wang, Tongtong & Chen, Zhuoting & Jiang, Jincheng, 2021. "A fast and reliable methodology to evaluate maximum CO2 storage capacity of depleted coal seams: A case study," Energy, Elsevier, vol. 231(C).
    5. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    6. Withey, Patrick & Johnston, Craig & Guo, Jinggang, 2019. "Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    8. Stacy‐ann Robinson, 2020. "Climate change adaptation in SIDS: A systematic review of the literature pre and post the IPCC Fifth Assessment Report," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    9. Danqing Liu & Yilian Li & Ramesh Agarwal, 2020. "Evaluation of CO 2 Storage in a Shale Gas Reservoir Compared to a Deep Saline Aquifer in the Ordos Basin of China," Energies, MDPI, vol. 13(13), pages 1-18, July.
    10. Alain Bonneville & Essam Heggy & Christopher Strickland & Jonathan Normand & Jeffrey Dermond & Yilin Fang & Charlotte Sullivan, 2015. "Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4667-4682, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yanwei & Dai, Zhenxue & Chen, Li & Shen, Xudong & Chen, Fangxuan & Soltanian, Mohamad Reza, 2023. "An integrated multi-scale model for CO2 transport and storage in shale reservoirs," Applied Energy, Elsevier, vol. 331(C).
    2. Vo Thanh, Hung & Yasin, Qamar & Al-Mudhafar, Watheq J. & Lee, Kang-Kun, 2022. "Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers," Applied Energy, Elsevier, vol. 314(C).
    3. Abdulwahab Alqahtani & Xupeng He & Bicheng Yan & Hussein Hoteit, 2023. "Uncertainty Analysis of CO 2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization," Energies, MDPI, vol. 16(4), pages 1-16, February.
    4. Aaditya Khanal & Md Fahim Shahriar, 2022. "Physics-Based Proxy Modeling of CO 2 Sequestration in Deep Saline Aquifers," Energies, MDPI, vol. 15(12), pages 1-23, June.
    5. Eigbe, Patrick A. & Ajayi, Olatunbosun O. & Olakoyejo, Olabode T. & Fadipe, Opeyemi L. & Efe, Steven & Adelaja, Adekunle O., 2023. "A general review of CO2 sequestration in underground geological formations and assessment of depleted hydrocarbon reservoirs in the Niger Delta," Applied Energy, Elsevier, vol. 350(C).
    6. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    7. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    10. Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
    11. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    12. Xu, Liang & Li, Qi & Myers, Matthew & Cao, Xiaomin, 2023. "Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite," Energy, Elsevier, vol. 273(C).
    13. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Turgay Ertekin & Qian Sun, 2019. "Artificial Intelligence Applications in Reservoir Engineering: A Status Check," Energies, MDPI, vol. 12(15), pages 1-22, July.
    15. Mazahir Hussain & Shuang Liu & Umar Ashraf & Muhammad Ali & Wakeel Hussain & Nafees Ali & Aqsa Anees, 2022. "Application of Machine Learning for Lithofacies Prediction and Cluster Analysis Approach to Identify Rock Type," Energies, MDPI, vol. 15(12), pages 1-15, June.
    16. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    17. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    19. Changwan Gu & Jingjing Xie & Xiaoyu Li & Xu Gao, 2023. "Levelized Cost Analysis for Blast Furnace CO 2 Capture, Utilization, and Storage Retrofit in China’s Blast Furnace–Basic Oxygen Furnace Steel Plants," Energies, MDPI, vol. 16(23), pages 1-20, November.
    20. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6599-:d:1122714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.