IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v58y2016icp199-210.html
   My bibliography  Save this article

Understanding the energy-GDP elasticity: A sectoral approach

Author

Listed:
  • Burke, Paul J.
  • Csereklyei, Zsuzsanna

Abstract

This paper uses per capita data for 132 countries over 1960–2010 to estimate elasticities of sectoral energy use with respect to national gross domestic product (GDP). We estimate models in both levels and growth rates and use our estimates to sectorally decompose the aggregate energy-GDP elasticity. Our estimates show that residential energy use is very inelastic to GDP if primary solid biofuels are counted in energy use tallies, especially at low income levels. Residential use of electricity is more tightly linked to GDP, as is energy use by the transportation, industrial, and services sectors. Agriculture typically accounts for a small share of energy use and has a modest energy-GDP elasticity. The aggregate energy-GDP elasticity tends to be higher for countries at higher income levels, in large part because traditional use of primary solid biofuels is less important. Gasoline prices, winter temperature, population, and land area are among other factors influencing sectoral energy use.

Suggested Citation

  • Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
  • Handle: RePEc:eee:eneeco:v:58:y:2016:i:c:p:199-210
    DOI: 10.1016/j.eneco.2016.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316301761
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    2. Ordás Criado, C. & Valente, S. & Stengos, T., 2011. "Growth and pollution convergence: Theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 199-214, September.
    3. Jakob, Michael & Haller, Markus & Marschinski, Robert, 2012. "Will history repeat itself? Economic convergence and convergence in energy use patterns," Energy Economics, Elsevier, vol. 34(1), pages 95-104.
    4. Bruns, Stephan B. & Gross, Christian, 2013. "What if energy time series are not independent? Implications for energy-GDP causality analysis," Energy Economics, Elsevier, vol. 40(C), pages 753-759.
    5. Arthur van Benthem & Mattia Romani, 2009. "Fuelling Growth: What Drives Energy Demand in Developing Countries?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 91-114.
    6. Burke, Paul J., 2010. "Income, resources, and electricity mix," Energy Economics, Elsevier, vol. 32(3), pages 616-626, May.
    7. Ang, B. W., 1987. "Energy-output ratios and sectoral energy use : The case of Southeast Asian countries," Energy Policy, Elsevier, vol. 15(3), pages 262-282, June.
    8. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    9. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    10. Adeyemi, Olutomi I. & Hunt, Lester C., 2014. "Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand," Energy Economics, Elsevier, vol. 45(C), pages 435-444.
    11. Ang, B. W., 1991. "A statistical analysis of energy coefficients," Energy Economics, Elsevier, vol. 13(2), pages 93-110, April.
    12. Baltagi, Badi H & Griffin, James M, 1984. "Short and Long Run Effects in Pooled Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 631-645, October.
    13. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    14. Yi-Xuan Gao & Hua Liao & Paul J. Burke & Yi-Ming Wei, 2015. "Road transport energy consumption in the G7 and BRICS: 1973-2010," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(4/5/6), pages 342-356.
    15. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    16. Baltagi, Badi H. & Griffin, James M., 1983. "Gasoline demand in the OECD : An application of pooling and testing procedures," European Economic Review, Elsevier, vol. 22(2), pages 117-137, July.
    17. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    18. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    19. Csereklyei, Zsuzsanna & Stern, David I., 2015. "Global energy use: Decoupling or convergence?," Energy Economics, Elsevier, vol. 51(C), pages 633-641.
    20. Anjum, Zeba & Burke, Paul J. & Gerlagh, Reyer & Stern, David I., "undated". "Modeling the Emissions-Income Relationship Using Long-Run Growth Rates," Working Papers 249422, Australian National University, Centre for Climate Economics & Policy.
    21. Pirotte, Alain, 1999. "Convergence of the static estimation toward the long run effects of dynamic panel data models," Economics Letters, Elsevier, vol. 63(2), pages 151-158, May.
    22. Robert J. Barro, 2015. "Convergence and Modernisation," Economic Journal, Royal Economic Society, vol. 125(585), pages 911-942, June.
    23. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    24. A. Pirotte, 2003. "Convergence of the static estimation toward the long-run effects of dynamic panel data models: a labour demand illustration," Applied Economics Letters, Taylor & Francis Journals, vol. 10(13), pages 843-847.
    25. Burke, Paul J., 2013. "The national-level energy ladder and its carbon implications," Environment and Development Economics, Cambridge University Press, vol. 18(4), pages 484-503, August.
    26. Brookes, L G, 1972. "More on the Output Elasticity of Energy Consumption," Journal of Industrial Economics, Wiley Blackwell, vol. 21(1), pages 83-92, November.
    27. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    28. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    29. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
    30. Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
    31. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    32. Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
    33. Stern, David I., 2010. "Between estimates of the emissions-income elasticity," Ecological Economics, Elsevier, vol. 69(11), pages 2173-2182, September.
    34. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    35. Arthur A. van Benthem, 2015. "Energy Leapfrogging," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 93-132.
    36. Burke, Paul J. & Dundas, Guy, 2015. "Female Labor Force Participation and Household Dependence on Biomass Energy: Evidence from National Longitudinal Data," World Development, Elsevier, vol. 67(C), pages 424-437.
    37. Paul J. Burke & Md Shahiduzzaman & David I. Stern, 2015. "Carbon dioxide emissions in the short run: The rate and sources of economic growth matter," CAMA Working Papers 2015-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    38. Burke, Paul J. & Nishitateno, Shuhei, 2013. "Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries," Energy Economics, Elsevier, vol. 36(C), pages 363-370.
    39. François Lescaroux, 2013. "Industrial energy demand, a forecasting model based on an index decomposition of structural and efficiency effects," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 37(4), pages 477-502, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    2. Csereklyei, Zsuzsanna & Stern, David I., 2015. "Global energy use: Decoupling or convergence?," Energy Economics, Elsevier, vol. 51(C), pages 633-641.
    3. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    4. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
    6. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    8. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    9. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).
    10. Liddle, Brantley & Sadorsky, Perry, 2020. "How much do asymmetric changes in income and energy prices affect energy demand?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    11. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    12. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    13. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    14. Paul J. Burke & Shuhei Nishitateno, 2015. "Gasoline Prices And Road Fatalities: International Evidence," Economic Inquiry, Western Economic Association International, vol. 53(3), pages 1437-1450, July.
    15. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    16. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    17. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    18. González-Álvarez, María A. & Montañés, Antonio & Olmos, Lorena, 2020. "Towards a sustainable energy scenario? A worldwide analysis," Energy Economics, Elsevier, vol. 87(C).
    19. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    20. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.

    More about this item

    Keywords

    Elasticity; Sectoral; Energy use; Economic development; Economic growth; Decomposition;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:58:y:2016:i:c:p:199-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.