IDEAS home Printed from https://ideas.repec.org/p/een/ccepwp/1116.html
   My bibliography  Save this paper

The National-Level Energy Ladder and its Carbon Implications

Author

Listed:
  • Paul J. Burke

    (Crawford School of Economics & Government, Australian National University, Canberra, ACT, Australia)

Abstract

This paper documents an energy ladder that nations ascend as their per capita incomes increase. On average, economic development results in an overall substitution from the use of biomass to fulfill energy needs to energy sourced from fossil fuels, and then toward nuclear power and certain low-carbon modern renewables such as wind power. The results imply an inverse-U shaped relationship between per capita income and the carbon intensity of energy, which is borne out in the data. Fossil fuel-poor countries are more likely to climb to the upper rungs of the national-level energy ladder and experience reductions in the carbon intensity of energy as they develop than fossil fuel-rich countries. Leapfrogging to low-carbon energy sources on the upper rungs of the national-level energy ladder is one route via which developing countries can reduce the magnitudes of their expected upswings in carbon dioxide emissions.

Suggested Citation

  • Paul J. Burke, 2011. "The National-Level Energy Ladder and its Carbon Implications," CCEP Working Papers 1116, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:ccepwp:1116
    as

    Download full text from publisher

    File URL: http://ccep.anu.edu.au/data/2011/pdf/wpapers/CCEP1116Burke.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Burke, Paul J., 2010. "Income, resources, and electricity mix," Energy Economics, Elsevier, vol. 32(3), pages 616-626, May.
    2. David I. Stern, 2012. "Ecological Economics," Crawford School Research Papers 1203, Crawford School of Public Policy, The Australian National University.
    3. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    4. Catherine Norman, 2009. "Rule of Law and the Resource Curse: Abundance Versus Intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 183-207, June.
    5. World Bank, 2009. "World Development Indicators 2009," World Bank Publications - Books, The World Bank Group, number 4367.
    6. Marcotullio, Peter J. & Schulz, Niels B., 2007. "Comparison of Energy Transitions in the United States and Developing and Industrializing Economies," World Development, Elsevier, vol. 35(10), pages 1650-1683, October.
    7. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    8. Stern, David I., 2010. "Between estimates of the emissions-income elasticity," Ecological Economics, Elsevier, vol. 69(11), pages 2173-2182, September.
    9. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    10. Hadjilambrinos, Constantine, 2000. "Understanding technology choice in electricity industries: a comparative study of France and Denmark," Energy Policy, Elsevier, vol. 28(15), pages 1111-1126, December.
    11. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    12. Ang, B.W. & Liu, N., 2006. "A cross-country analysis of aggregate energy and carbon intensities," Energy Policy, Elsevier, vol. 34(15), pages 2398-2404, October.
    13. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    14. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    15. Bashmakov, Igor, 2007. "Three laws of energy transitions," Energy Policy, Elsevier, vol. 35(7), pages 3583-3594, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burke, Paul J., 2010. "Income, resources, and electricity mix," Energy Economics, Elsevier, vol. 32(3), pages 616-626, May.
    2. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    3. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    4. Raul Jimenez & Ariel Yépez-García, 2016. "Composition and Sensitivity of Residential Energy Consumption," IDB Publications (Working Papers) 95257, Inter-American Development Bank.
    5. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    6. Csereklyei, Zsuzsanna & Stern, David I., 2015. "Global energy use: Decoupling or convergence?," Energy Economics, Elsevier, vol. 51(C), pages 633-641.
    7. Anjum, Zeba & Burke, Paul J. & Gerlagh, Reyer & Stern, David I., "undated". "Modeling the Emissions-Income Relationship Using Long-Run Growth Rates," Working Papers 249422, Australian National University, Centre for Climate Economics & Policy.
    8. Fouquet, Roger, 2016. "Lessons from energy history for climate policy: technological change, demand and economic development," LSE Research Online Documents on Economics 67785, London School of Economics and Political Science, LSE Library.
    9. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    10. Dong Wang & Ben White & Amin Mugera & Bei Wang, 2022. "Energy Transition and Economic Development in China: A National and Sectorial Analysis from a New Structural Economics Perspectives," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    11. Kileber, Solange & Parente, Virginia, 2015. "Diversifying the Brazilian electricity mix: Income level, the endowment effect, and governance capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1180-1189.
    12. Dawit Diriba Guta & Jose Jara & Narayan Prasad Adhikari & Qiu Chen & Varun Gaur & Alisher Mirzabaev, 2017. "Assessment of the Successes and Failures of Decentralized Energy Solutions and Implications for the Water–Energy–Food Security Nexus: Case Studies from Developing Countries," Resources, MDPI, vol. 6(3), pages 1-15, June.
    13. Guta, Dawit & Jara, Jose & Adhikari, Narayan & Qiu, Chen & Gaur, Varun & Mirzabaev, Alisher, 2015. "Decentralized energy in Water-Energy-Food Security Nexus in Developing Countries: Case Studies on Successes and Failures," Discussion Papers 207713, University of Bonn, Center for Development Research (ZEF).
    14. Mirzabaev, Alisher & Guta, Dawit & Goedecke, Jann & Gaur, Varun & Börner, Jan & Virchow, Detlef & Denich, Manfred & von Braun, Joachim, 2014. "Bioenergy, Food Security and Poverty Reduction: Mitigating tradeoffs and promoting synergies along the Water- Energy-Food Security Nexus," Working Papers 180421, University of Bonn, Center for Development Research (ZEF).
    15. Burke, Paul J. & Dundas, Guy, 2015. "Female Labor Force Participation and Household Dependence on Biomass Energy: Evidence from National Longitudinal Data," World Development, Elsevier, vol. 67(C), pages 424-437.
    16. Klege, Rebecca A. & Amuakwa-Mensah, Franklin & Visser, Martine, 2022. "Tenancy and energy choices in Rwanda. A replication and extension study," World Development Perspectives, Elsevier, vol. 26(C).
    17. Maurizio Lisciandra & Carlo Migliardo, 2017. "An Empirical Study of the Impact of Corruption on Environmental Performance: Evidence from Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 297-318, October.
    18. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    19. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    20. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).

    More about this item

    JEL classification:

    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:ccepwp:1116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCEP (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.