IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v32y2010i3p616-626.html
   My bibliography  Save this article

Income, resources, and electricity mix

Author

Listed:
  • Burke, Paul J.

Abstract

This paper presents evidence on a national-level electricity ladder which sees countries transition toward coal and natural gas, and finally nuclear power and modern renewables such as wind power, for their electricity needs as they develop. The extent to which countries climb the electricity ladder is dependent on energy endowments. The results imply that the environmental implications of economic development differ in countries with different energy resource endowments. An effective global carbon mitigation strategy will require developing countries to leapfrog the middle rungs of the electricity ladder.

Suggested Citation

  • Burke, Paul J., 2010. "Income, resources, and electricity mix," Energy Economics, Elsevier, vol. 32(3), pages 616-626, May.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:3:p:616-626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(10)00023-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Banerjee, Rangan, 2006. "Comparison of options for distributed generation in India," Energy Policy, Elsevier, vol. 34(1), pages 101-111, January.
    2. Azomahou, Theophile & Laisney, Francois & Nguyen Van, Phu, 2006. "Economic development and CO2 emissions: A nonparametric panel approach," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1347-1363, August.
    3. Sachs, J-D & Warner, A-M, 1995. "Natural Resource Abundance and Economic Growth," Papers 517a, Harvard - Institute for International Development.
    4. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
    5. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    6. Elbert Dijkgraaf & Herman Vollebergh, 2005. "A Test for Parameter Homogeneity in CO 2 Panel EKC Estimations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(2), pages 229-239, October.
    7. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    8. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    9. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    10. Marcotullio, Peter J. & Schulz, Niels B., 2007. "Comparison of Energy Transitions in the United States and Developing and Industrializing Economies," World Development, Elsevier, vol. 35(10), pages 1650-1683, October.
    11. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    12. Leach, Gerald, 1992. "The energy transition," Energy Policy, Elsevier, vol. 20(2), pages 116-123, February.
    13. Catherine Norman, 2009. "Rule of Law and the Resource Curse: Abundance Versus Intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 183-207, June.
    14. World Bank, 2009. "World Development Indicators 2009," World Bank Publications, The World Bank, number 4367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Xuan Gao & Hua Liao & Paul J. Burke & Yi-Ming Wei, 2015. "Road transport energy consumption in the G7 and BRICS: 1973-2010," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(4/5/6), pages 342-356.
    2. Lee, Lisa Yu-Ting, 2013. "Household energy mix in Uganda," Energy Economics, Elsevier, vol. 39(C), pages 252-261.
    3. Cherp, Aleh & Vinichenko, Vadim & Jewell, Jessica & Suzuki, Masahiro & Antal, Miklós, 2017. "Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan," Energy Policy, Elsevier, vol. 101(C), pages 612-628.
    4. Stern, David I., 2010. "The Role of Energy in Economic Growth," Working Papers 249380, Australian National University, Centre for Climate Economics & Policy.
    5. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    6. Stern, David I. & Gerlagh, Reyer & Burke, Paul J., 2017. "Modeling the emissions–income relationship using long-run growth rates," Environment and Development Economics, Cambridge University Press, vol. 22(06), pages 699-724, December.
    7. Burke, Paul J., 2013. "The national-level energy ladder and its carbon implications," Environment and Development Economics, Cambridge University Press, vol. 18(04), pages 484-503, August.
    8. Burke, Paul J., 2012. "Climbing the electricity ladder generates carbon Kuznets curve downturns," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(2), June.
    9. Rohan Best & Paul J. Burke, 2017. "The Importance of Government Effectiveness for Transitions toward Greater Electrification in Developing Countries," Energies, MDPI, Open Access Journal, vol. 10(9), pages 1-17, August.
    10. Jakob, Michael & Haller, Markus & Marschinski, Robert, 2012. "Will history repeat itself? Economic convergence and convergence in energy use patterns," Energy Economics, Elsevier, vol. 34(1), pages 95-104.
    11. Csereklyei, Zsuzsanna, 2014. "Measuring the impact of nuclear accidents on energy policy," Ecological Economics, Elsevier, vol. 99(C), pages 121-129.
    12. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    13. Kileber, Solange & Parente, Virginia, 2015. "Diversifying the Brazilian electricity mix: Income level, the endowment effect, and governance capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1180-1189.
    14. Best, Rohan, 2017. "Switching towards coal or renewable energy? The effects of financial capital on energy transitions," Energy Economics, Elsevier, vol. 63(C), pages 75-83.
    15. Csereklyei, Zsuzsanna & Stern, David I., 2015. "Global energy use: Decoupling or convergence?," Energy Economics, Elsevier, vol. 51(C), pages 633-641.
    16. Satoshi Yamazaki & Jing Tian & Firmin Doko Tchatoka, 2014. "Are per capita CO 2 emissions increasing among OECD countries? A test of trends and breaks," Applied Economics Letters, Taylor & Francis Journals, vol. 21(8), pages 569-572, May.
    17. Michael Smith & Johannes Urpelainen, 2014. "The Effect of Feed-in Tariffs on Renewable Electricity Generation: An Instrumental Variables Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 367-392, March.
    18. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    19. Burke, Paul J. & Dundas, Guy, 2015. "Female Labor Force Participation and Household Dependence on Biomass Energy: Evidence from National Longitudinal Data," World Development, Elsevier, vol. 67(C), pages 424-437.
    20. Paul J. Burke & Md Shahiduzzaman & David I. Stern, 2015. "Carbon dioxide emissions in the short run: The rate and sources of economic growth matter," CAMA Working Papers 2015-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    21. Phetkeo Poumanyvong & Shinji Kaneko & Shobhakar Dhakal, 2012. "Impacts of urbanization on national residential energy use and CO2 emissions: Evidence from low-, middle- and high-income countries," IDEC DP2 Series 2-5, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    22. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    23. Adrienne M. Ohler, 2015. "Factors affecting the rise of renewable energy in the U.S.: Concern over environmental quality or rising unemployment?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    24. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    25. Johannes Urpelainen & Thijs Van de Graaf, 2015. "The International Renewable Energy Agency: a success story in institutional innovation?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(2), pages 159-177, May.

    More about this item

    Keywords

    Economic development Electricity mix Energy Substitution Transition;

    JEL classification:

    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:3:p:616-626. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.