IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p66-82.html
   My bibliography  Save this article

Dynamics of final sectoral energy demand and aggregate energy intensity

Author

Listed:
  • Lescaroux, François

Abstract

This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge.

Suggested Citation

  • Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:66-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00690-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    2. Francois Lescaroux & Olivier Rech, 2008. "The Impact of Automobile Diffusion on the Income Elasticity of Motor Fuel Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 41-60.
    3. Storchmann, Karl, 2005. "Long-Run Gasoline demand for passenger cars: the role of income distribution," Energy Economics, Elsevier, vol. 27(1), pages 25-58, January.
    4. Dargay, Joyce & Gately, Dermot, 1997. "Vehicle ownership to 2015: Implications for energy use and emissions," Energy Policy, Elsevier, vol. 25(14-15), pages 1121-1127, December.
    5. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    6. Halicioglu, Ferda, 2007. "Residential electricity demand dynamics in Turkey," Energy Economics, Elsevier, vol. 29(2), pages 199-210, March.
    7. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    8. François Lescaroux, 2010. "Car Ownership in Relation to Income Distribution and Consumers' Spending Decisions," Journal of Transport Economics and Policy, University of Bath, vol. 44(2), pages 207-230, May.
    9. Dargay, Joyce & Gately, Dermot, 1999. "Income's effect on car and vehicle ownership, worldwide: 1960-2015," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 101-138, February.
    10. Barro, Robert J, 2000. "Inequality and Growth in a Panel of Countries," Journal of Economic Growth, Springer, vol. 5(1), pages 5-32, March.
    11. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    12. Rossana Galli, 1998. "The Relationship Between Energy Intensity and Income Levels: Forecasting Long Term Energy Demand in Asian Emerging Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-105.
    13. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    14. Agnolucci, Paolo, 2009. "The energy demand in the British and German industrial sectors: Heterogeneity and common factors," Energy Economics, Elsevier, vol. 31(1), pages 175-187, January.
    15. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    16. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    17. Pierre Villa, 2000. "Evolution sur longue periode de l’intensite energetique," Economie Internationale, CEPII research center, issue 82, pages 167-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    2. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
    3. Mahumane, Gilberto & Mulder, Peter, 2015. "Mozambique Energy Outlook, 2015-2030. Data, scenarios and policy implications," MPRA Paper 65968, University Library of Munich, Germany.
    4. repec:eee:energy:v:141:y:2017:i:c:p:108-122 is not listed on IDEAS
    5. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    6. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    7. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    9. Indranarain Ramlall, 2012. "Modelling Non-Renewable Energy in Mauritius: In Quest for Sustainable Policies towards a Greener Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 123-133.
    10. Mahumane, Gilberto & Mulder, Peter, 2015. "Introducing MOZLEAP: an integrated long-run scenario model of the emerging energy sector of Mozambique," MPRA Paper 65967, University Library of Munich, Germany.
    11. Stern, David I., 2012. "Modeling international trends in energy efficiency," Energy Economics, Elsevier, vol. 34(6), pages 2200-2208.
    12. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
    13. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    14. repec:eee:eneeco:v:66:y:2017:i:c:p:69-84 is not listed on IDEAS
    15. Richard S. J. Tol & Sebastian Petrick & Katrin Rehdanz, 2012. "The Impact of Temperature Changes on Residential Energy Use," Working Paper Series 4412, Department of Economics, University of Sussex.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:66-82. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.