IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034941.html
   My bibliography  Save this article

Energy-conservation model of inter-provincial cooperation that accounts GDP and social benefits

Author

Listed:
  • Xue, Jian
  • Guo, Meichen
  • Shi, Shaoqing
  • Zhao, Laijun

Abstract

With rapid development of the global economy, economic growth is increasingly dependent on energy consumption, and the world faces the associated problems of environmental pollution and depletion of energy sources. This creates a challenge: Our ability to achieve these goals is severely constrained by the current governance based on non-cooperative energy conservation. To improve energy conservation in China, we developed an energy-conservation model based on market mechanisms. The model has three parts: (1) a two-objective (GDP and social benefits) optimization model; (2) a model that determines the optimal trading volume for energy conservation quotas in each province, including division of provinces into quota buyers and sellers and a cooperative game model for energy conservation quotas; and (3) a Nash distribution model for inter-provincial cooperation to fairly distribute the benefits from cooperation. We then used Shandong, Zhejiang, and Jiangsu provinces for an empirical analysis of the cooperative model. With the current territorial management approach, the social benefits of the inter-provincial cooperation based on option trading increased by 2.79 %, and GDP increased by 273.636 × 109 CNY. After a reasonable distribution of the benefits, each province benefited from the cooperation. This demonstrates that our model can improve China's current energy conservation governance.

Suggested Citation

  • Xue, Jian & Guo, Meichen & Shi, Shaoqing & Zhao, Laijun, 2024. "Energy-conservation model of inter-provincial cooperation that accounts GDP and social benefits," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034941
    DOI: 10.1016/j.energy.2023.130100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    2. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    3. Florian Landis, Sebastian Rausch, Mirjam Kosch, and Christoph Böhringer, 2019. "Efficient and Equitable Policy Design: Taxing Energy Use or Promoting Energy Savings?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    5. Xue, Jian & Zhang, Wenjing & Zhao, Laijun & Zhu, Di & Li, Lei & Gong, Ruifeng, 2022. "A cooperative inter-provincial model for energy conservation that accounts for employment and social energy costs," Energy, Elsevier, vol. 239(PB).
    6. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    7. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).
    8. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    9. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).
    2. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    3. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    4. Zeng, Lijun & Du, Wenjing & Zhang, Wencheng & Zhao, Laijun & Wang, Zhaohua, 2023. "An inter-provincial cooperation model under Renewable Portfolio Standard policy," Energy, Elsevier, vol. 269(C).
    5. Lijun Zeng & Wencheng Zhang & Muyi Yang, 2023. "A Bi-Level Optimization Model for Inter-Provincial Energy Consumption Transfer Tax in China," Energies, MDPI, vol. 16(21), pages 1-20, October.
    6. Zheng, Qingying & Lin, Boqiang, 2020. "Achieving energy conservation targets in a more cost-effective way: Case study of pulp and paper industry in China," Energy, Elsevier, vol. 191(C).
    7. Xue, Jian & Zhang, Wenjing & Zhao, Laijun & Zhu, Di & Li, Lei & Gong, Ruifeng, 2022. "A cooperative inter-provincial model for energy conservation that accounts for employment and social energy costs," Energy, Elsevier, vol. 239(PB).
    8. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    9. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    10. Almut E. D. Veraart & Luitgard A. M. Veraart, 2013. "Risk premia in energy markets," CREATES Research Papers 2013-02, Department of Economics and Business Economics, Aarhus University.
    11. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    12. Maliyamu Abudureheman & Qingzhe Jiang & Xiucheng Dong & Cong Dong, 2022. "CO 2 Emissions in China: Does the Energy Rebound Matter?," Energies, MDPI, vol. 15(12), pages 1-25, June.
    13. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    14. Ole E. Barndorff-Nielsen & Mikko S. Pakkanen & Jürgen Schmiegel, 2013. "Assessing Relative Volatility/Intermittency/Energy Dissipation," CREATES Research Papers 2013-15, Department of Economics and Business Economics, Aarhus University.
    15. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    16. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    17. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    18. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    19. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    20. Landis, Florian & Rausch, Sebastian, 2019. "Policy Instrument Choice with Co-Benefits: The Case of Decarbonizing Transport," Conference papers 333103, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.