IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03217-w.html
   My bibliography  Save this article

The nexus between CO2 intensity of GDP and environmental degradation in South European countries

Author

Listed:
  • Minhaj Ali

    (The Islamia University of Bahawalpur)

  • Dervis Kirikkaleli

    (European University of Lefke)

  • Mehmet Altuntaş

    (Nisantasi University)

Abstract

This paper investigates whether carbon dioxide (CO2) intensity of gross domestic product (GDP) matters for environmental deregulations in Southern European countries over the period of 1990–2018 while controlling economic growth, globalization, and energy consumption. The present study uses the second generation panel based techniques, namely cross-sectional dependency test, cross-sectional unit-root test, Westerlund cointegration test, augmented mean group and common correlated effects mean group estimators, and Dumitrescu–Hurlin causality test to measure the effect of CO2 intensity of GDP, economic growth, globalization, and energy consumption on environmental degradation. The empirical finding of the present study reveals that the CO2 intensity of GDP is an important factor in determining environmental degradation in South European countries, as the outcomes show that a 1% boost in CO2 intensity of GDP is causing a 1.7728% increase in CO2 emissions. Moreover, a 1% increase in economic growth caused a 0.2568% boost in CO2 emissions. The result is crucial for policy decision-making and can perhaps be applied to take decisive policy actions to mitigate environmental issues.

Suggested Citation

  • Minhaj Ali & Dervis Kirikkaleli & Mehmet Altuntaş, 2024. "The nexus between CO2 intensity of GDP and environmental degradation in South European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11089-11100, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03217-w
    DOI: 10.1007/s10668-023-03217-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03217-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03217-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    2. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    3. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    4. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    5. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    6. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    7. Li Chunling & Javed Ahmed Memon & Tiep Le Thanh & Minhaj Ali & Dervis Kirikkaleli, 2021. "The Impact of Public-Private Partnership Investment in Energy and Technological Innovation on Ecological Footprint: The Case of Pakistan," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    8. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    9. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    10. Muhammad Qayyum & Minhaj Ali & Mir Muhammad Nizamani & Shijie Li & Yuyuan Yu & Atif Jahanger, 2021. "Nexus between Financial Development, Renewable Energy Consumption, Technological Innovations and CO 2 Emissions: The Case of India," Energies, MDPI, vol. 14(15), pages 1-19, July.
    11. Andy Haines & Markus Amann & Nathan Borgford-Parnell & Sunday Leonard & Johan Kuylenstierna & Drew Shindell, 2017. "Short-lived climate pollutant mitigation and the Sustainable Development Goals," Nature Climate Change, Nature, vol. 7(12), pages 863-869, December.
    12. Nahil Boussiga & Malek Ghdamsi, 2016. "The Corruption-Terrorism Nexus: A Panel Data Approach," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(11), pages 111-117, November.
    13. Nahil Boussiga & Malek Ghdamsi, 2016. "The Corruption-Terrorism Nexus: A Panel Data Approach," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(11), pages 111-111, November.
    14. Bo Yang & Minhaj Ali & Shujahat Haider Hashmi & Mohsin Shabir, 2020. "Income Inequality and CO 2 Emissions in Developing Countries: The Moderating Role of Financial Instability," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    15. Eberhardt, Markus & Bond, Stephen, 2009. "Cross-section dependence in nonstationary panel models: a novel estimator," MPRA Paper 17692, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bright Akwasi Gyamfi & Asiedu B. Ampomah & Festus V. Bekun & Simplice A. Asongu, 2022. "Can information and communication technology and institutional quality help mitigate climate change in E7 economies? An environmental Kuznets curve extension," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-20, December.
    2. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).
    3. Quynh Chau Pham Holland & Benjamin Liu & Eduardo Roca, 2019. "International funding cost and heterogeneous mortgage interest-rate pass-through: a bank-level analysis," Empirical Economics, Springer, vol. 57(4), pages 1255-1289, October.
    4. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    5. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).
    6. Huang, Lingyun & Zou, Yanjun, 2020. "How to promote energy transition in China: From the perspectives of interregional relocation and environmental regulation," Energy Economics, Elsevier, vol. 92(C).
    7. Shahbaz, Muhammad & Nwani, Chinazaekpere & Bekun, Festus Victor & Gyamfi, Bright Akwasi & Agozie, Divine Q., 2022. "Discerning the role of renewable energy and energy efficiency in finding the path to cleaner consumption and production patterns: New insights from developing economies," Energy, Elsevier, vol. 260(C).
    8. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    9. Alvarado, Rafael & Tillaguango, Brayan & Murshed, Muntasir & Ochoa-Moreno, Santiago & Rehman, Abdul & Işık, Cem & Alvarado-Espejo, Johana, 2022. "Impact of the informal economy on the ecological footprint: The role of urban concentration and globalization," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 750-767.
    10. Jahanger, Atif & Usman, Muhammad & Kousar, Rakhshanda & Balsalobre-Lorente, Daniel, 2023. "Implications for optimal abatement path through the deployment of natural resources, human development, and energy consumption in the era of digitalization," Resources Policy, Elsevier, vol. 86(PB).
    11. Adedoyin, Festus Fatai & Alola, Andrew Adewale & Bekun, Festus Victor, 2021. "The alternative energy utilization and common regional trade outlook in EU-27: Evidence from common correlated effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Usman, Muhammad & Balsalobre-Lorente, Daniel & Jahanger, Atif & Ahmad, Paiman, 2022. "Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter?," Renewable Energy, Elsevier, vol. 183(C), pages 90-102.
    13. Andrew Adewale Alola & Glory Chiyoru Dike & Uju Violet Alola, 2022. "The Role of Legal System and Socioeconomic Aspects in the Environmental Quality Drive of the Global South," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(2), pages 953-972, September.
    14. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
    16. Chletsos Michael & Roupakias Stelios, 2020. "The effect of military spending on income inequality: evidence from NATO countries," Empirical Economics, Springer, vol. 58(3), pages 1305-1337, March.
    17. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    18. Syed Asif Ali Naqvi & Bilal Hussain & Ashfaq Ahmad Shah & Muhammad Atiq Ur Rehman Tariq & Muhammad Usman, 2022. "Influence of Economic Growth, Energy Production, and Subcomponents on the Environment: A Regional Level Analytical Modeling," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    19. Guo, Qingran & Abbas, Shujaat & AbdulKareem, Hauwah K.K. & Shuaibu, Muhammad Shehu & Khudoykulov, Khurshid & Saha, Tanaya, 2023. "Devising strategies for sustainable development in sub-Saharan Africa: The roles of renewable, non-renewable energy, and natural resources," Energy, Elsevier, vol. 284(C).
    20. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03217-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.