IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Cross-section dependence in nonstationary panel models: a novel estimator

  • Eberhardt, Markus
  • Bond, Stephen

This paper uses Monte Carlo simulations to investigate the impact of nonstationarity, parameter heterogeneity and cross-section dependence on estimation and inference in macro panel data. We compare the performance of standard panel estimators with that of our own two-step method (the AMG) and the Pesaran (2006) Common Correlated Effects (CCE) estimators in time-series panels with arguably similar characteristics to those encountered in empirical applications using cross-country macro data. The empirical model adopted leads to an identification problem in standard estimation approaches in the case where the same unobserved common factors drive the evolution of both dependent and independent variables. We replicate the design of two recent Monte Carlo studies on the topic (Coakley et al, 2006; Kapetanios et al, 2009), with results confirming that the Pesaran (2006) CCE approach as well as our own AMG estimator solve this identification problem by accounting for the unobserved common factors in the regression equation. Our investigation however also indicates that simple augmentation with year dummies can do away with most of the bias in standard pooled estimators reported --- a finding which is in stark contrast to the results from earlier empirical work we carried out using cross-country panel data for agriculture and manufacturing (Eberhardt & Teal, 2008; Eberhardt & Teal, 2009). We therefore introduce a number of additional Monte Carlo setups which lead to greater discrepancy in the results between standard (micro-)panel estimators and the novel approaches incorporating cross-section dependence. We further highlight the performance of the pooled OLS estimator with variables in first differences and speculate about the reasons for its favourable results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/17692/1/MPRA_paper_17692.pdf
File Function: original version
Download Restriction: no

File URL: http://mpra.ub.uni-muenchen.de/17870/2/MPRA_paper_17870.pdf
File Function: revised version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 17692.

as
in new window

Length:
Date of creation: 07 Oct 2009
Date of revision:
Handle: RePEc:pra:mprapa:17692
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo Group Munich.
  2. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, 07.
  3. Jushan Bai & Chihwa Kao & Serena Ng, 2007. "Panel Cointegration with Global Stochastic Trends," Center for Policy Research Working Papers 90, Center for Policy Research, Maxwell School, Syracuse University.
  4. Francis Teal & Markus Eberhardt, 2010. "Productivity Analysis in Global Manufacturing Production," Economics Series Working Papers 515, University of Oxford, Department of Economics.
  5. Eberhardt, Markus & Teal, Francis, 2009. "A Common Factor Approach to Spatial Heterogeneity in Agricultural Productivity Analysis," MPRA Paper 15810, University Library of Munich, Germany.
  6. Pesaran, M.H. & Smith, R., 1992. "Estimating Long-Run Relationships From Dynamic Heterogeneous Panels," Cambridge Working Papers in Economics 9215, Faculty of Economics, University of Cambridge.
  7. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
  8. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
  9. Francis Teal & Markus Eberhardt, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," Economics Series Working Papers WPS/2008-12, University of Oxford, Department of Economics.
  10. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17692. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.