IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15453-z.html
   My bibliography  Save this article

Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era

Author

Listed:
  • Yi-Ming Wei

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Rong Han

    (Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Ce Wang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Biying Yu

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Qiao-Mei Liang

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Xiao-Chen Yuan

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Junjie Chang

    (Beijing Institute of Technology)

  • Qingyu Zhao

    (Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Hua Liao

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Baojun Tang

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Beijing Key Lab of Energy Economics and Environmental Management)

  • Jinyue Yan

    (Royal Institute of Technology)

  • Lijing Cheng

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Zili Yang

    (State University of New York at Binghamton)

Abstract

A strategy that informs on countries’ potential losses due to lack of climate action may facilitate global climate governance. Here, we quantify a distribution of mitigation effort whereby each country is economically better off than under current climate pledges. This effort-sharing optimizing approach applied to a 1.5 °C and 2 °C global warming threshold suggests self-preservation emissions trajectories to inform NDCs enhancement and long-term strategies. Results show that following the current emissions reduction efforts, the whole world would experience a washout of benefit, amounting to almost 126.68–616.12 trillion dollars until 2100 compared to 1.5 °C or well below 2 °C commensurate action. If countries are even unable to implement their current NDCs, the whole world would lose more benefit, almost 149.78–791.98 trillion dollars until 2100. On the contrary, all countries will be able to have a significant positive cumulative net income before 2100 if they follow the self-preservation strategy.

Suggested Citation

  • Yi-Ming Wei & Rong Han & Ce Wang & Biying Yu & Qiao-Mei Liang & Xiao-Chen Yuan & Junjie Chang & Qingyu Zhao & Hua Liao & Baojun Tang & Jinyue Yan & Lijing Cheng & Zili Yang, 2020. "Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15453-z
    DOI: 10.1038/s41467-020-15453-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15453-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15453-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    3. Javed, Aamir & Rapposelli, Agnese & Khan, Feroz & Javed, Asif, 2023. "The impact of green technology innovation, environmental taxes, and renewable energy consumption on ecological footprint in Italy: Fresh evidence from novel dynamic ARDL simulations," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    4. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    5. Chen, Xiaotong & Yang, Fang & Zhang, Shining & Zakeri, Behnam & Chen, Xing & Liu, Changyi & Hou, Fangxin, 2021. "Regional emission pathways, energy transition paths and cost analysis under various effort-sharing approaches for meeting Paris Agreement goals," Energy, Elsevier, vol. 232(C).
    6. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    7. Denis Maragno & Carlo Federico dall’Omo & Gianfranco Pozzer & Niccolò Bassan & Francesco Musco, 2020. "Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin," Sustainability, MDPI, vol. 12(13), pages 1-29, July.
    8. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    9. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    10. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    11. Khalil Ullah Mohammad & Mohsin Raza Khan, 2022. "Effectiveness Of Green Project Screening For Bank Lending: Evidence From Pakistan," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 11(1), pages 93-103, March.
    12. Chen, Hao & Qi, Shaozhou & Zhang, Jihong, 2022. "Towards carbon neutrality with Chinese characteristics: From an integrated perspective of economic growth-equity-environment," Applied Energy, Elsevier, vol. 324(C).
    13. Sorin Cheval & Cristian Mihai Adamescu & Teodoro Georgiadis & Mathew Herrnegger & Adrian Piticar & David R. Legates, 2020. "Observed and Potential Impacts of the COVID-19 Pandemic on the Environment," IJERPH, MDPI, vol. 17(11), pages 1-25, June.
    14. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    15. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15453-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.