IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2498-d358610.html
   My bibliography  Save this article

Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand

Author

Listed:
  • Kamal Chapagain

    (Sirindhorn International Institute of Technology, Thammasat University, PathumThani 12000, Thailand
    School of Engineering, Kathmandu University, Dhulikhel 45200, Nepal)

  • Somsak Kittipiyakul

    (Sirindhorn International Institute of Technology, Thammasat University, PathumThani 12000, Thailand)

  • Pisut Kulthanavit

    (Faculty of Economics, Thammasat University, Bangkok 10200, Thailand)

Abstract

Accurate electricity demand forecasting for a short horizon is very important for day-to-day control, scheduling, operation, planning, and stability of the power system. The main factors that affect the forecasting accuracy are deterministic variables and weather variables such as types of days and temperature. Due to the tropical climate of Thailand, the marginal impact of weather variables on electricity demand is worth analyzing. Therefore, this paper primarily focuses on the impact of temperature and other deterministic variables on Thai electricity demand. Accuracy improvement is also considered during model design. Based on the characteristics of demand, the overall dataset is divided into four different subgroups and models are developed for each subgroup. The regression models are estimated using Ordinary Least Square (OLS) methods for uncorrelated errors, and General Least Square (GLS) methods for correlated errors, respectively. While Feed Forward Artificial Neural Network (FF-ANN) as a simple Deep Neural Network (DNN) is estimated to compare the accuracy with regression methods, several experiments conducted for determination of training length, selection of variables, and the number of neurons show some major findings. The first finding is that regression methods can have better forecasting accuracy than FF-ANN for Thailand’s dataset. Unlike much existing literature, the temperature effect on Thai electricity demand is very interesting because of their linear relationship. The marginal impacts of temperature on electricity demand are also maximal at night hours. The maximum impact of temperature during night hours happens at 11 p.m., is 300 MW/ ° C, about 4 % rise in demand while during day hours, the temperature impact is only 10 MW/ ° C to 200 MW/ ° C about 1.4 % to 2.6 % rise.

Suggested Citation

  • Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, Open Access Journal, vol. 13(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2498-:d:358610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    2. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    3. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    4. Serralles, Roberto J., 2006. "Electric energy restructuring in the European Union: Integration, subsidiarity and the challenge of harmonization," Energy Policy, Elsevier, vol. 34(16), pages 2542-2551, November.
    5. Claudiu Boțoc & Sorin Gabriel Anton, 2017. "Is profitability driven by working capital management? evidence for high-growth firms from emerging Europe," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1135-1155, November.
    6. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    7. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    8. De Cian, Enrica & Lanzi, Elisa & Roson, Roberto, 2007. "The Impact of Temperature Change on Energy Demand: A Dynamic Panel Analysis," Climate Change Modelling and Policy Working Papers 9322, Fondazione Eni Enrico Mattei (FEEM).
    9. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    10. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    11. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    12. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    13. Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, Open Access Journal, vol. 12(20), pages 1-19, October.
    14. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, Open Access Journal, vol. 11(4), pages 1-34, April.
    15. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2019. "Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study," Energies, MDPI, Open Access Journal, vol. 12(7), pages 1-31, April.
    16. Caston Sigauke & Murendeni Maurel Nemukula & Daniel Maposa, 2018. "Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models," Energies, MDPI, Open Access Journal, vol. 11(9), pages 1-21, August.
    17. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    18. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, Open Access Journal, vol. 10(11), pages 1-29, November.
    19. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    20. Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
    21. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, Open Access Journal, vol. 13(2), pages 1-27, January.
    22. Asadoorian, Malcolm O. & Eckaus, Richard S. & Schlosser, C. Adam, 2008. "Modeling climate feedbacks to electricity demand: The case of China," Energy Economics, Elsevier, vol. 30(4), pages 1577-1602, July.
    23. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    24. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    25. Hippert, H.S. & Bunn, D.W. & Souza, R.C., 2005. "Large neural networks for electricity load forecasting: Are they overfitted?," International Journal of Forecasting, Elsevier, vol. 21(3), pages 425-434.
    26. repec:dau:papers:123456789/8180 is not listed on IDEAS
    27. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    28. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simian Pang & Zixuan Zheng & Fan Luo & Xianyong Xiao & Lanlan Xu, 2021. "Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems," Sustainability, MDPI, Open Access Journal, vol. 13(12), pages 1-16, June.
    2. Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, Open Access Journal, vol. 13(21), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, Open Access Journal, vol. 11(4), pages 1-34, April.
    2. Grafe, Rosmarie & Cancelo, José Ramón & Espasa, Antoni, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    4. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    5. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    6. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    7. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    8. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    9. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    10. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    11. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    12. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    13. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    14. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    15. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    16. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    17. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    18. repec:qut:auncer:wp103 is not listed on IDEAS
    19. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    20. Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
    21. Wang, Chi-hsiang & Grozev, George & Seo, Seongwon, 2012. "Decomposition and statistical analysis for regional electricity demand forecasting," Energy, Elsevier, vol. 41(1), pages 313-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2498-:d:358610. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.