IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp1235-1249.html
   My bibliography  Save this article

Spatial-temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China

Author

Listed:
  • Fan, Xiaojia
  • Wu, Sanmang
  • Li, Shantong

Abstract

Trade flows between provinces have led to the transfer of embodied carbon emissions. Therefore, when formulating carbon emission reduction policies for a province, it's necessary to consider the carbon emissions implied in trade. In this study, we established an interprovincial carbon flow analysis framework based on multi-regional input-output model, and we used China's 1997, 2002, 2007, and 2012 input-output data to make an empirical research of Hebei Province. The findings are as follows. Firstly, from 1997 to 2012, the embodied carbon emissions' net outflow of Hebei increased by 244.26 Mt, the number of the provinces that net inflowed carbon from Hebei increased from 18 to 22, and they extended from eastern coastal provinces and southern China to most parts of the country. Secondly, technological level and trade demand are the main factors affecting carbon emissions' net outflow, contributing −108.45 Mt and 352.71 Mt, respectively. On this basis, we developed a relationship model of the net outflow of carbon emission and commodity value to optimize the industrial development. Different from previous studies, our research has penetrated into every industry and every related province. We not only calculated the commodity transfer and embodied carbon transfer between Hebei Province and other provinces, and balanced the advantages and disadvantages of trade between key industries and provinces, then gave specific solutions and optimization measures, which has stronger practical meaning and guiding significance.

Suggested Citation

  • Fan, Xiaojia & Wu, Sanmang & Li, Shantong, 2019. "Spatial-temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China," Energy, Elsevier, vol. 185(C), pages 1235-1249.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1235-1249
    DOI: 10.1016/j.energy.2019.06.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    2. Fang, Delin & Chen, Bin, 2018. "Linkage analysis for water-carbon nexus in China," Applied Energy, Elsevier, vol. 225(C), pages 682-695.
    3. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    4. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    5. Christoph Böhringer & Jared C. Carbone & Thomas F. Rutherford, 2018. "Embodied Carbon Tariffs," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(1), pages 183-210, January.
    6. Zhu Liu, 2015. "China?s Carbon Emissions Report 2015," Working Paper 269176, Harvard University OpenScholar.
    7. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    8. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    9. Alex Y. Lo, 2012. "Carbon emissions trading in China," Nature Climate Change, Nature, vol. 2(11), pages 765-766, November.
    10. Gabriela Michalek & Reimund Schwarze, 2015. "Carbon leakage: pollution, trade or politics?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1471-1492, December.
    11. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    12. Zhu, Yongbin & Shi, Yajuan & Wu, Jing & Wu, Leying & Xiong, Wen, 2018. "Exploring the Characteristics of CO2 Emissions Embodied in International Trade and the Fair Share of Responsibility," Ecological Economics, Elsevier, vol. 146(C), pages 574-587.
    13. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    14. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    15. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    16. Manfred Lenzen & Lise-Lotte Pade & Jesper Munksgaard, 2004. "CO2 Multipliers in Multi-region Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 391-412.
    17. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    18. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    19. Bastianoni, Simone & Pulselli, Federico Maria & Tiezzi, Enzo, 2004. "The problem of assigning responsibility for greenhouse gas emissions," Ecological Economics, Elsevier, vol. 49(3), pages 253-257, July.
    20. Sai Liang & Yafei Wang & Chao Zhang & Ming Xu & Zhifeng Yang & Weidong Liu & Hongguang Liu & Anthony S.F. Chiu, 2018. "Final production-based emissions of regions in China," Economic Systems Research, Taylor & Francis Journals, vol. 30(1), pages 18-36, January.
    21. Jing Meng & Zhifu Mi & Dabo Guan & Jiashuo Li & Shu Tao & Yuan Li & Kuishuang Feng & Junfeng Liu & Zhu Liu & Xuejun Wang & Qiang Zhang & Steven J. Davis, 2018. "The rise of South–South trade and its effect on global CO2 emissions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    22. Wei, Yi-Ming & Wang, Lu & Liao, Hua & Wang, Ke & Murty, Tad & Yan, Jinyue, 2014. "Responsibility accounting in carbon allocation: A global perspective," Applied Energy, Elsevier, vol. 130(C), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xiurui & Shen, Yaqian & Chen, Dongsheng & Zhao, Lijuan & Tian, Xiaolei, 2021. "Quantification of reduced disease burden resulting from air quality improvement by clean energy deployment in Hebei Province, China," Energy Policy, Elsevier, vol. 159(C).
    2. Chunli Jin & Qiaoqiao Zhu & Hui Sun, 2023. "Temporal and Spatial Divergence of Embodied Carbon Emissions Transfer and the Drivers—Evidence from China’s Domestic Trade," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    3. Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
    4. Wang, G.Y. & Li, Y.P. & Liu, J. & Huang, G.H. & Chen, L.R. & Yang, Y.J. & Gao, P.P., 2022. "A two-phase factorial input-output model for analyzing CO2-emission reduction pathway and strategy from multiple perspectives – A case study of Fujian province," Energy, Elsevier, vol. 248(C).
    5. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).
    6. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Li, Zhihui & Deng, Xiangzheng & Peng, Lu, 2020. "Uncovering trajectories and impact factors of CO2 emissions: A sectoral and spatially disaggregated revisit in Beijing," Technological Forecasting and Social Change, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    2. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    3. Zhong, Zhangqi & Guo, Zhifang & Zhang, Jianwu, 2021. "Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    4. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    5. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    6. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Zhang, Yan & Li, Yaoguang & Hubacek, Klaus & Tian, Xin & Lu, Zhongming, 2019. "Analysis of CO2 transfer processes involved in global trade based on ecological network analysis," Applied Energy, Elsevier, vol. 233, pages 576-583.
    8. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    9. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    10. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    11. Jiang, Lei & He, Shixiong & Zhong, Zhangqi & Zhou, Haifeng & He, Lingyun, 2019. "Revisiting environmental kuznets curve for carbon dioxide emissions: The role of trade," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 245-257.
    12. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    13. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
    14. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    15. Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
    16. Zhangqi, Zhong & Zhuli, Chen & Lingyun, He, 2022. "Technological innovation, industrial structural change and carbon emission transferring via trade-------An agent-based modeling approach," Technovation, Elsevier, vol. 110(C).
    17. Wenbin Shao & Fangyi Li & Zhaoyang Ye & Zhipeng Tang & Wu Xie & Yu Bai & Shanlin Yang, 2019. "Inter-Regional Spillover of Carbon Emissions and Employment in China: Is It Positive or Negative?," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    18. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    19. Airebule, Palizha & Cheng, Haitao & Ishikawa, Jota, 2023. "Assessing carbon emissions embodied in international trade based on shared responsibility," Journal of the Japanese and International Economies, Elsevier, vol. 68(C).
    20. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1235-1249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.