IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp403-418.html
   My bibliography  Save this article

Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)

Author

Listed:
  • Meng, Fanxin
  • Liu, Gengyuan
  • Chang, Yuan
  • Su, Meirong
  • Hu, Yuanchao
  • Yang, Zhifeng

Abstract

The range and complexity of interdependencies between water and carbon emissions, including synergies and trade-offs, are greatest in cities. Therefore, the investigation of urban water-carbon nexus is becoming vital for the urban sustainable development. Input-Output (IO) model is an effective tool to evaluate the direct and indirect environmental effects. However, the accurate quantification on urban water-carbon nexus is seriously constrained by the highly-aggregated sector classification in urban IO models, hindering the implement of specific urban policies. Thus, this study developed a Water Carbon-IO-Life Cycle Assessment (WC-IO-LCA) model based on a modified IO approach that disaggregates the construction sector into 12 subsectors according to different building types in cities. It aims to analyze and identify the key nodes and routes of urban water-carbon nexus in Beijing's economic system in 2010. Our results demonstrate that Electricity sector is the direct water-carbon nexus node and Construction sector is the high-intensive embodied water-carbon nexus node in Beijing. Of which, nearly 64% of embodied water and 83% of embodied carbon are derived from the source sectors in the upstream of the production supply chains for Construction sector. The culture sports and entertainment buildings presented the largest embodied water-carbon intensity, which is identified as the major control point in Construction sector.

Suggested Citation

  • Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:403-418
    DOI: 10.1016/j.energy.2019.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    2. Fang, Delin & Chen, Bin, 2018. "Linkage analysis for water-carbon nexus in China," Applied Energy, Elsevier, vol. 225(C), pages 682-695.
    3. Sören Lindner & Julien Legault & Dabo Guan, 2012. "Disaggregating Input--Output Models With Incomplete Information," Economic Systems Research, Taylor & Francis Journals, vol. 24(4), pages 329-347, April.
    4. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2013. "Life-cycle energy of residential buildings in China," Energy Policy, Elsevier, vol. 62(C), pages 656-664.
    5. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    6. Zhu Liu & Steven J. Davis & Kuishuang Feng & Klaus Hubacek & Sai Liang & Laura Diaz Anadon & Bin Chen & Jingru Liu & Jinyue Yan & Dabo Guan, 2016. "Targeted opportunities to address the climate–trade dilemma in China," Nature Climate Change, Nature, vol. 6(2), pages 201-206, February.
    7. Meng, Fanxin & Liu, Gengyuan & Hu, Yuanchao & Su, Meirong & Yang, Zhifeng, 2018. "Urban carbon flow and structure analysis in a multi-scales economy," Energy Policy, Elsevier, vol. 121(C), pages 553-564.
    8. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    9. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.
    10. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    11. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    12. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    13. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
    14. Ali, Yousaf & Pretaroli, Rosita & Socci, Claudio & Severini, Francesca, 2018. "Carbon and water footprint accounts of Italy: A Multi-Region Input-Output approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1813-1824.
    15. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    16. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    17. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    18. Zhao, X. & Tillotson, M.R. & Liu, Y.W. & Guo, W. & Yang, A.H. & Li, Y.F., 2017. "Index decomposition analysis of urban crop water footprint," Ecological Modelling, Elsevier, vol. 348(C), pages 25-32.
    19. Venkatesh, G. & Chan, Arthur & Brattebø, Helge, 2014. "Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors," Energy, Elsevier, vol. 75(C), pages 153-166.
    20. Lin, Jianyi & Liu, Yuan & Meng, Fanxin & Cui, Shenghui & Xu, Lilai, 2013. "Using hybrid method to evaluate carbon footprint of Xiamen City, China," Energy Policy, Elsevier, vol. 58(C), pages 220-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Gardars, Emanuel Birkir & Rodríguez-Macias, Antonio & Tena-García, Jorge Luis & Fuentes-Cortés, Luis Fabián, 2022. "Assessment of the water–energy–carbon nexus in energy systems: A multi-objective approach," Applied Energy, Elsevier, vol. 305(C).
    2. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    3. Wang, P.P. & Li, Y.P. & Huang, G.H. & Wang, S.G., 2022. "A multivariate statistical input–output model for analyzing water-carbon nexus system from multiple perspectives - Jing-Jin-Ji region," Applied Energy, Elsevier, vol. 310(C).
    4. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    5. Wang, G.Y. & Li, Y.P. & Liu, J. & Huang, G.H. & Chen, L.R. & Yang, Y.J. & Gao, P.P., 2022. "A two-phase factorial input-output model for analyzing CO2-emission reduction pathway and strategy from multiple perspectives – A case study of Fujian province," Energy, Elsevier, vol. 248(C).
    6. Yachen Xie & Jiaguo Qi & Rui Zhang & Xiaomiao Jiao & Gabriela Shirkey & Shihua Ren, 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry," Energies, MDPI, vol. 15(12), pages 1-24, June.
    7. Zhang, Yiyi & Wang, Jiaqi & Zhang, Linmei & Liu, Jiefeng & Zheng, Hanbo & Fang, Jiake & Hou, Shengren & Chen, Shaoqing, 2020. "Optimization of China’s electric power sector targeting water stress and carbon emissions," Applied Energy, Elsevier, vol. 271(C).
    8. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    9. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    11. Cheng, Shulei & Fan, Wei & Chen, Jiandong & Meng, Fanxin & Liu, Gengyuan & Song, Malin & Yang, Zhifeng, 2020. "The impact of fiscal decentralization on CO2 emissions in China," Energy, Elsevier, vol. 192(C).
    12. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    2. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    3. Meng, Fanxin & Liu, Gengyuan & Hu, Yuanchao & Su, Meirong & Yang, Zhifeng, 2018. "Urban carbon flow and structure analysis in a multi-scales economy," Energy Policy, Elsevier, vol. 121(C), pages 553-564.
    4. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    5. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Fan, Xiaojia & Wu, Sanmang & Li, Shantong, 2019. "Spatial-temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China," Energy, Elsevier, vol. 185(C), pages 1235-1249.
    8. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    9. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    10. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    11. Zhong, Zhangqi & Guo, Zhifang & Zhang, Jianwu, 2021. "Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    13. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    14. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    15. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    16. Fang, Delin & Chen, Bin, 2018. "Linkage analysis for water-carbon nexus in China," Applied Energy, Elsevier, vol. 225(C), pages 682-695.
    17. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    18. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    19. Xu, Zhongwen & Huang, Liqiao & Liao, Maolin & Xue, Jinjun & Yoshida, Yoshikuni & Long, Yin, 2022. "Quantifying consumption-based carbon emissions of major economic sectors in Japan considering the global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 330-341.
    20. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:403-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.