IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261922000459.html
   My bibliography  Save this article

A multivariate statistical input–output model for analyzing water-carbon nexus system from multiple perspectives - Jing-Jin-Ji region

Author

Listed:
  • Wang, P.P.
  • Li, Y.P.
  • Huang, G.H.
  • Wang, S.G.

Abstract

Water scarcity and carbon dioxide (CO2) emission continue to be challenges faced by decision makers in urban and regional scales. In this study, a multivariate statistical input–output (MSIO) model is developed for analyzing water-carbon nexus system, through incorporating techniques of input–output analysis (IOA) and multivariate statistical analysis (MSA) into a general framework. MSIO is able to: (i) recognize the complicated characteristics of multi-element, multi-sector and multi-factor in water-carbon nexus system from network and statistical perspectives; (ii) simulate different technology-upgrade policies on key transmission sectors that are the middle nodes of supply chain paths; (iii) quantify the individual and interactive effects of sectors on water-carbon variations. MSIO is applied to analyzing water-carbon nexus system in Jing-Jin-Ji region (China). Major findings are: (i) for the region in 2030, agriculture, service and food industries would be typical water consumers (accounting for 35.0%, 22.8% and 10.8%); metal, service, and electricity and heat industries would be typical CO2 emitters (accounting for 24.1%, 22.0% and 19.7%); (ii) CO2 reduction policy could aim at the sectors of cluster 1 (i.e. energy production, manufacturing, construction and service industries); policy oriented toward water resource could aim at the sectors of cluster 2 (i.e. agriculture, food and textile industries); (iii) technology-upgrade policy on Beijing’s electricity and heat industry would have significant performance in water-carbon reductions, indicating that this sector is highly dependent on upstream industry and intra-regional trade supply; (iv) the synergy of Hebei’s heavy industry and Beijing’s electricity and heat industry would perform best in water-carbon management (i.e. water-consumption intensity and CO2-emission intensity would decrease by 3.3% and 15.3%, respectively), suggesting that it is crucial to improve the production capacity and output efficiency of these sectors from the perspective of the middle of the supply chain.

Suggested Citation

  • Wang, P.P. & Li, Y.P. & Huang, G.H. & Wang, S.G., 2022. "A multivariate statistical input–output model for analyzing water-carbon nexus system from multiple perspectives - Jing-Jin-Ji region," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000459
    DOI: 10.1016/j.apenergy.2022.118560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mort Webster & Pearl Donohoo & Bryan Palmintier, 2013. "Water–CO2 trade-offs in electricity generation planning," Nature Climate Change, Nature, vol. 3(12), pages 1029-1032, December.
    2. Fang, Delin & Chen, Bin, 2018. "Linkage analysis for water-carbon nexus in China," Applied Energy, Elsevier, vol. 225(C), pages 682-695.
    3. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    4. Lv, J. & Li, Y.P. & Shan, B.G. & Jin, S.W. & Suo, C., 2018. "Planning energy-water nexus system under multiple uncertainties – A case study of Hebei province," Applied Energy, Elsevier, vol. 229(C), pages 389-403.
    5. Marques, Alexandra & Rodrigues, João & Domingos, Tiago, 2013. "International trade and the geographical separation between income and enabled carbon emissions," Ecological Economics, Elsevier, vol. 89(C), pages 162-169.
    6. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    7. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    8. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    9. Zhang, Chongyu & Lu, Xi & Ren, Guo & Chen, Shi & Hu, Chengyu & Kong, Zhaoyang & Zhang, Ning & Foley, Aoife M., 2021. "Optimal allocation of onshore wind power in China based on cluster analysis," Applied Energy, Elsevier, vol. 285(C).
    10. Tian, Chuyin & Huang, Guohe & Piwowar, Joseph M. & Yeh, Shin-Cheng & Lu, Chen & Duan, Ruixin & Ren, Jiayan, 2022. "Stochastic RCM-driven cooling and heating energy demand analysis for residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    12. Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
    13. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    14. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    15. Adham, Ammar & Wesseling, Jan G. & Abed, Rasha & Riksen, Michel & Ouessar, Mohamed & Ritsema, Coen J., 2019. "Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia," Agricultural Water Management, Elsevier, vol. 221(C), pages 131-140.
    16. Lenzen, Manfred & Murray, Joy, 2010. "Conceptualising environmental responsibility," Ecological Economics, Elsevier, vol. 70(2), pages 261-270, December.
    17. Erik Dietzenbacher & Ronald E. Miller, 2009. "Ras‐Ing The Transactions Or The Coefficients: It Makes No Difference," Journal of Regional Science, Wiley Blackwell, vol. 49(3), pages 555-566, August.
    18. Jamil, Ahmad & Javed, Adeel & Wajid, Abdul & Zeb, Muhammad Omar & Ali, Majid & Khoja, Asif Hussain & Imran, Muhammad, 2021. "Multiparametric optimization for reduced condenser cooling water consumption in a degraded combined cycle gas turbine power plant from a water-energy nexus perspective," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rupu Yang & Min Wang & Mengxue Zhao & Xiangzhao Feng, 2022. "Synergic Benefits of Air Pollutant Reduction, CO 2 Emission Abatement, and Water Saving under the Goal of Achieving Carbon Emission Peak: The Case of Tangshan City, China," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    2. Ruihua Shen & Lei Yao, 2022. "Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 19(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    2. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    3. Yachen Xie & Jiaguo Qi & Rui Zhang & Xiaomiao Jiao & Gabriela Shirkey & Shihua Ren, 2022. "Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry," Energies, MDPI, vol. 15(12), pages 1-24, June.
    4. Cong Chen & Lei Yu & Xueting Zeng & Guohe Huang & Yongping Li, 2020. "Planning an Energy–Water–Environment Nexus System in Coal-Dependent Regions under Uncertainties," Energies, MDPI, vol. 13(1), pages 1-40, January.
    5. Zhang, Yiyi & Wang, Jiaqi & Zhang, Linmei & Liu, Jiefeng & Zheng, Hanbo & Fang, Jiake & Hou, Shengren & Chen, Shaoqing, 2020. "Optimization of China’s electric power sector targeting water stress and carbon emissions," Applied Energy, Elsevier, vol. 271(C).
    6. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    7. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    8. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    9. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Zhang, Zengkai & Zhang, ZhongXiang & Zhu, Kunfu, 2020. "Allocating carbon responsibility: The role of spatial production fragmentation," Energy Economics, Elsevier, vol. 87(C).
    11. Yi Zhao & Gang Lin & Dong Jiang & Jingying Fu & Xiang Li, 2022. "Low-Carbon Development from the Energy–Water Nexus Perspective in China’s Resource-Based City," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    12. Jinyoung Lee & Hana Kim, 2021. "Regional dimensions of the South Korean water-energy nexus," Energy & Environment, , vol. 32(4), pages 722-736, June.
    13. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Ouyang, Xiao & Xu, Zihan & Fan, Weiguo & Wei, Hejie & Song, Weize, 2021. "Regional embodied Water-Energy-Carbon efficiency of China," Energy, Elsevier, vol. 224(C).
    14. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Foley, Aoife & Huisingh, Donald & Guan, Dabo & Dong, Xiaobin & Varbanov, Petar Sabev, 2021. "Unsustainable imbalances and inequities in Carbon-Water-Energy flows across the EU27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Antonin Pottier & Gaëlle Le Treut, 2023. "Quantifying GHG emissions enabled by capital and labor: Economic and gender inequalities in France," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 624-636, April.
    16. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    17. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    18. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    19. Wang, G.Y. & Li, Y.P. & Liu, J. & Huang, G.H. & Chen, L.R. & Yang, Y.J. & Gao, P.P., 2022. "A two-phase factorial input-output model for analyzing CO2-emission reduction pathway and strategy from multiple perspectives – A case study of Fujian province," Energy, Elsevier, vol. 248(C).
    20. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.