IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v141y2015icp209-217.html
   My bibliography  Save this article

An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries

Author

Listed:
  • Cui, Qiang
  • Li, Ye

Abstract

In this paper, transportation carbon efficiency is redefined, and its inputs and outputs are obtained from a literature review. Carbon, capital and labor are selected as the inputs, and passenger turnover volume and freight turnover volume are defined as the outputs. A new model, a virtual frontier DEA (virtual frontier Data Envelopment Analysis), is applied to evaluate transportation carbon efficiencies, and cases from 15 countries during the period of 2003–2010 are analyzed to verify the results. Next, a Tobit regression model is applied to identify the important influencing factors of transportation carbon efficiency. The results indicate that compared to the technology factor and management factor, the influencing degree of a structure factor is relatively small.

Suggested Citation

  • Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
  • Handle: RePEc:eee:appene:v:141:y:2015:i:c:p:209-217
    DOI: 10.1016/j.apenergy.2014.12.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012975
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Christopher R. Knittel, 2012. "Reducing Petroleum Consumption from Transportation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 93-118, Winter.
    4. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    5. Zhaohua Wang & Chen Wang & Jianhua Yin, 2015. "Strategies for addressing climate change on the industrial level: affecting factors to CO 2 emissions of energy-intensive industries in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 303-317, February.
    6. Bristow, Abigail L. & Tight, Miles & Pridmore, Alison & May, Anthony D., 2008. "Developing pathways to low carbon land-based passenger transport in Great Britain by 2050," Energy Policy, Elsevier, vol. 36(9), pages 3427-3435, September.
    7. Trappey, Amy J.C. & Trappey, Charles & Hsiao, C.T. & Ou, Jerry J.R. & Li, S.J. & Chen, Kevin W.P., 2012. "An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy," Energy Policy, Elsevier, vol. 45(C), pages 510-515.
    8. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    9. DeCicco, John & Mark, Jason, 1998. "Meeting the energy and climate challenge for transportation in the United States," Energy Policy, Elsevier, vol. 26(5), pages 395-412, April.
    10. Boyd, Gale A. & Pang, Joseph X., 2000. "Estimating the linkage between energy efficiency and productivity," Energy Policy, Elsevier, vol. 28(5), pages 289-296, May.
    11. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    12. Yung-Ho Chiu & Yu-Chuan Chen & Xue-Jie Bai, 2011. "Efficiency and risk in Taiwan banking: SBM super-DEA estimation," Applied Economics, Taylor & Francis Journals, vol. 43(5), pages 587-602.
    13. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    14. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    15. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    16. Haroldo Machado-Filho, 2009. "Brazilian low-carbon transportation policies: opportunities for international support," Climate Policy, Taylor & Francis Journals, vol. 9(5), pages 495-507, September.
    17. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    18. Yang, Christopher & McCollum, David L & McCarthy, Ryan & Leighty, Wayne, 2009. "Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California," Institute of Transportation Studies, Working Paper Series qt2ns1q98f, Institute of Transportation Studies, UC Davis.
    19. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    20. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    21. Kaufman, Andrew S. & Meier, Paul J. & Sinistore, Julie C. & Reinemann, Douglas J., 2010. "Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels," Energy Policy, Elsevier, vol. 38(9), pages 5229-5241, September.
    22. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2013. "Dynamic formation mechanism of airport competitiveness: The case of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 10-18.
    23. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    24. Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
    25. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    26. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    27. Chen, Yao, 2005. "Measuring super-efficiency in DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 161(2), pages 545-551, March.
    28. Azadeh, A. & Amalnick, M.S. & Ghaderi, S.F. & Asadzadeh, S.M., 2007. "An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors," Energy Policy, Elsevier, vol. 35(7), pages 3792-3806, July.
    29. Zhang, Bin & Wang, Zhaohua, 2014. "Inter-firm collaborations on carbon emission reduction within industrial chains in China: Practices, drivers and effects on firms' performances," Energy Economics, Elsevier, vol. 42(C), pages 115-131.
    30. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    31. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    32. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    33. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    34. Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
    35. Henri-David Waisman & Celine Guivarch & Franck Lecocq, 2013. "The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 106-129, March.
    36. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    37. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    38. Zhaohua Wang & Chao Feng, 2014. "The impact and economic cost of environmental regulation on energy utilization in China," Applied Economics, Taylor & Francis Journals, vol. 46(27), pages 3362-3376, September.
    39. Mei Xue & Patrick T. Harker, 2002. "Note: Ranking DMUs with Infeasible Super-Efficiency DEA Models," Management Science, INFORMS, vol. 48(5), pages 705-710, May.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:141:y:2015:i:c:p:209-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.