IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0294947.html
   My bibliography  Save this article

How can new energy development reduce CO2 emissions: Empirical evidence of inverted U-shaped relationship in China

Author

Listed:
  • Feng Xiong
  • HuiDong Mo

Abstract

This article is based on the statistical yearbook data of 30 provinces, municipalities and autonomous regions in China (excluding Hong Kong, Macao, Taiwan, and Tibet Autonomous Region) from 2000 to 2017, a total of 18 years of statistical yearbook data was used to conduct in-depth research on the reduction of CO2 emissions from the development of new energy in the region. First, it is proposed that the regional new energy development has a significant negative effect on CO2 emissions. Meanwhile, this impact has a significant time lag effect, and the development of new energy cannot be quickly and effectively applied in the short term to replace traditional fossil energy in the dynamic model. Therefore, there is a significant positive impact in the short term, but the significant negative effect of new energy development on CO2 emission can be shown in the long run. Secondly, the new energy development has a significant non-linear impact on CO2 emissions, showing an inverted U-shaped relationship, which confirms the existence of the Environmental Kuznets Curve (EKC) of CO2 emissions based on new energy development. Finally, in order to alleviate the continuous impact of national economic development on CO2 emissions, the DID model is used to prove that the level of technological innovation has a significant moderating effect on the CO2 emission reduction effect of new energy development, which confirms theoretically the importance of technological innovation in accelerating new energy substitution and improving energy efficiency.

Suggested Citation

  • Feng Xiong & HuiDong Mo, 2023. "How can new energy development reduce CO2 emissions: Empirical evidence of inverted U-shaped relationship in China," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0294947
    DOI: 10.1371/journal.pone.0294947
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294947
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0294947&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0294947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu, Deyi & Abbas, Shah & Rafique, Kalsoom & Ali, Najabat, 2023. "The race to net-zero emissions: Can green technological innovation and environmental regulation be the potential pathway to net-zero emissions?," Technology in Society, Elsevier, vol. 75(C).
    2. Rai, Varun & Victor, David G. & Thurber, Mark C., 2010. "Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies," Energy Policy, Elsevier, vol. 38(8), pages 4089-4098, August.
    3. Alok Bhargava, 2006. "Identification and Panel Data Models with Endogenous Regressors," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 3, pages 49-60, World Scientific Publishing Co. Pte. Ltd..
    4. Neves, Sónia Almeida & Marques, António Cardoso & Patrício, Margarida, 2020. "Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 114-125.
    5. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    6. Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    7. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    8. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    9. Fakhri, Issaoui & Hassen, Toumi & Wassim, Touili, 2015. "Effects Of CO2 Emissions On Economic Growth, Urbanization And Welfare: Application To Mena Countries," MPRA Paper 65683, University Library of Munich, Germany.
    10. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    11. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    12. Gong, Bing & Zheng, Xiaochen & Guo, Qing & Ordieres-Meré, Joaquín, 2019. "Discovering the patterns of energy consumption, GDP, and CO2 emissions in China using the cluster method," Energy, Elsevier, vol. 166(C), pages 1149-1167.
    13. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    14. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    15. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    16. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shokoohi, Zeinab & Dehbidi, Navid Kargar & Tarazkar, Mohammad Hassan, 2022. "Energy intensity, economic growth and environmental quality in populous Middle East countries," Energy, Elsevier, vol. 239(PC).
    2. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    3. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    4. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    5. Mowshumi Sharmin & Mohammad Tareque, 2020. "Sustainable Growth-Environment Nexus in the Context of Four Developing Asian Economies: A Panel Analysis," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 18(3 (Fall)), pages 237-256.
    6. Yunzhao, Lu, 2022. "Modelling the role of eco innovation, renewable energy, and environmental taxes in carbon emissions reduction in E−7 economies: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 190(C), pages 309-318.
    7. Liu, Yang & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does energy aid mitigate the recipient countries’ carbon emissions?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 359-375.
    8. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    9. Shiqin Su & Siying Li, 2025. "Energy efficiency suppression and spatial spillover effect: a quasi-natural experiment based on China’s environmental protection tax law," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6397-6422, March.
    10. Song, Yang & Pang, Xiaoqian & Zhang, Zhiyuan & Sahut, Jean-Michel, 2024. "Can the new energy demonstration city policy promote corporate green innovation capability?," Energy Economics, Elsevier, vol. 136(C).
    11. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    12. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    13. Ardeshiri, Mansour & Moghaddasi, Reza & Yazdani, Saeed & Mohamadinejad, Amir, 2019. "Trade Openness and Spatial Distribution of Manufacturing Industries: Iranian Provincial Evidence," Asian Journal of Applied Economics/ Applied Economics Journal, Kasetsart University, Faculty of Economics, Center for Applied Economic Research, vol. 26(1), pages 21-44, June.
    14. MARINESCU Ștefana & MAHDAVIAN Seyed Mohammadreza & RĂDULESCU Magdalena, 2022. "Globalization, Energy Mix, Renewable Energy, and Emission: Romanian Case," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 02, June.
    15. Anh-Tu Nguyen & Shih-Hao Lu & Phuc Thanh Thien Nguyen, 2021. "Validating and Forecasting Carbon Emissions in the Framework of the Environmental Kuznets Curve: The Case of Vietnam," Energies, MDPI, vol. 14(11), pages 1-38, May.
    16. Tiba, Sofien & Belaid, Fateh, 2020. "The pollution concern in the era of globalization: Do the contribution of foreign direct investment and trade openness matter?," Energy Economics, Elsevier, vol. 92(C).
    17. Kyriaki-Argyro Tsioptsia & Eleni Zafeiriou & Dimitrios Niklis & Nikolaos Sariannidis & Constantin Zopounidis, 2022. "The Corporate Economic Performance of Environmentally Eligible Firms Nexus Climate Change: An Empirical Research in a Bayesian VAR Framework," Energies, MDPI, vol. 15(19), pages 1-16, October.
    18. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    19. Kun Chen & Yinrong Chen & Qingying Zhu & Min Liu, 2022. "The Relationship between Environmental Regulation, Industrial Transformation Change and Urban Low-Carbon Development: Evidence from 282 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    20. Al-mulali, Usama & Tang, Chor Foon & Ozturk, Ilhan, 2015. "Estimating the Environment Kuznets Curve hypothesis: Evidence from Latin America and the Caribbean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 918-924.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0294947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.