IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222030110.html
   My bibliography  Save this article

Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM

Author

Listed:
  • Zeng, Huibin
  • Shao, Bilin
  • Dai, Hongbin
  • Yan, Yichuan
  • Tian, Ning

Abstract

An accurate prediction on natural gas load is always a guarantee of a safe and reliable operation of the natural gas pipeline network system, however, natural gas daily load variations are instability and fluctuation. Therefore, accurate prediction fluctuation loads can be challenging. Concerning that many influencing factors of natural gas daily load are non-linear and time-varying, a combined prediction model combining GARCH family models, CatBoost algorithm, CNN and LSTM is proposed in this paper. The model combines two important techniques. The first technique is to visualize the fluctuation of the daily load of natural gas through the classical GARCH family model. and characterize the fluctuation through parameters. The second one is a new gradient boosting algorithm that can take into account factors such as the parameters of the GARCH family of models and the meteorological environment, and screen for suitable and important prediction features. It also combines CNN with LSTM to predict natural gas daily load with large fluctuations and calculates 95% confidence intervals. The experimental results show that the natural gas load prediction based on GARCH family-CatBoost-CNNLSTM is reduced by an average of 26.555%, 30.892%, and 26.283% in the three relative evaluation indicators of RMSE, MAE and MAPE, and an average increase of 0.914% in R2 compared with other single or combined control models such as LSTM, CNN and MLP. The model effectively combines the advantages of econometric methods, machine learning algorithms, deep learning algorithms and other techniques, as a result, it can be better applied to the prediction of fluctuation loads.

Suggested Citation

  • Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222030110
    DOI: 10.1016/j.energy.2022.126125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    3. Liu, Guixian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Cong & Li, Jiaman, 2018. "Natural gas consumption of urban households in China and corresponding influencing factors," Energy Policy, Elsevier, vol. 122(C), pages 17-26.
    4. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    5. Deng, Yanqiao & Ma, Xin & Zhang, Peng & Cai, Yubin, 2022. "Multi-step ahead forecasting of daily urban gas load in Chengdu using a Tanimoto kernel-based NAR model and Whale optimization," Energy, Elsevier, vol. 260(C).
    6. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    7. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
    8. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    9. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
    10. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    11. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    12. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    13. Nan Wei & Changjun Li & Jiehao Duan & Jinyuan Liu & Fanhua Zeng, 2019. "Daily Natural Gas Load Forecasting Based on a Hybrid Deep Learning Model," Energies, MDPI, vol. 12(2), pages 1-15, January.
    14. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Huseyin Cagan Kilinc & Iman Ahmadianfar & Vahdettin Demir & Salim Heddam & Ahmed M. Al-Areeq & Sani I. Abba & Mou Leong Tan & Bijay Halder & Haydar Abdulameer Marhoon & Zaher Mundher Yaseen, 2023. "Daily Scale River Flow Forecasting Using Hybrid Gradient Boosting Model with Genetic Algorithm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3699-3714, July.
    3. Wang, Yingnan & Chen, Xu & Zhao, Chunhui, 2024. "A data-driven soft sensor model for coal-fired boiler SO2 concentration prediction with non-stationary characteristic," Energy, Elsevier, vol. 300(C).
    4. Xu, Yifan & Che, Jinxing & Xia, Wenxin & Hu, Kun & Jiang, Weirui, 2024. "A novel paradigm: Addressing real-time decomposition challenges in carbon price prediction," Applied Energy, Elsevier, vol. 364(C).
    5. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    6. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
    7. Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).
    8. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
    2. Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
    3. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    4. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    5. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    6. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    7. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
    8. Zhang, Lihong & Wang, Jun & Wang, Bin, 2020. "Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility," Energy, Elsevier, vol. 211(C).
    9. Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
    10. Wang, Qi & Suo, Ruixia & Han, Qiutong, 2024. "A study on natural gas consumption forecasting in China using the LMDI-PSO-LSTM model: Factor decomposition and scenario analysis," Energy, Elsevier, vol. 292(C).
    11. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
    12. Svoboda, Radek & Kotik, Vojtech & Platos, Jan, 2021. "Short-term natural gas consumption forecasting from long-term data collection," Energy, Elsevier, vol. 218(C).
    13. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    14. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    15. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    16. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    18. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    19. Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
    20. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222030110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.