IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i2p463-d477179.html
   My bibliography  Save this article

Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership

Author

Listed:
  • Kevin Lanza

    (Michael and Susan Dell Center for Healthy Living, School of Public Health in Austin, The University of Texas Health Science Center at Houston, Austin, TX 78701, USA)

  • Casey P. Durand

    (Michael and Susan Dell Center for Healthy Living, Department of Health Promotion & Behavioral Sciences, School of Public Health in Houston, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA)

Abstract

Rising temperatures threaten the resilience of public transit systems. We determined whether bus stop shelters and tree canopy surrounding bus stops moderated the effect of warm season temperatures on ridership in Austin, Texas, and whether shelters and trees were equitably distributed. For bus stops (n = 2271) of Capital Metropolitan Transportation Authority, boardings per bus were measured 1 April–30 September 2019. Air temperature data originated from the Camp Mabry weather station. Tree canopy was calculated by classification of high-resolution aerial imagery from the National Agriculture Imagery Program. Data on race, ethnicity, poverty level, median age, and bus commuters within census tracts of bus stops originated from the 2014–2018 American Community Survey. Using multilevel negative binomial regression models, we found that shelters did not moderate the effect of high temperatures on ridership ( p > 0.05). During high temperatures, each one-percent increase in tree canopy was associated with a lesser decrease (1.6%) in ridership compared to if there were no trees (1.7%) ( p < 0.001). In general, shelters and trees were equitably distributed. Insignificant or modest effects of shelters and trees on ridership during high temperatures may be attributed to the transit dependency of riders. For climate change adaptation, we recommend tree planting at bus stops to protect from ridership losses and unhealthy exposure to extreme heat.

Suggested Citation

  • Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:463-:d:477179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/2/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/2/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakour, Vincent & Eluru, Naveen, 2016. "Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 205-217.
    2. Jackson Voelkel & Dana Hellman & Ryu Sakuma & Vivek Shandas, 2018. "Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon," IJERPH, MDPI, vol. 15(4), pages 1-14, March.
    3. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
    4. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
    5. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    6. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    7. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    8. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    9. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    10. Tobias Scholz & Angela Hof & Thomas Schmitt, 2018. "Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangwon Lee & Jennifer M. First, 2023. "Investigation of the Microenvironment, Land Cover Characteristics, and Social Vulnerability of Heat-Vulnerable Bus Stops in Knoxville, Tennessee," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    2. Litao Feng & Zhuo Li & Zhihui Zhao, 2021. "Extreme Climate Shocks and Green Agricultural Development: Evidence from the 2008 Snow Disaster in China," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    3. Bruce C. Mitchell & Jayajit Chakraborty & Pratyusha Basu, 2021. "Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India," IJERPH, MDPI, vol. 18(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    2. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    3. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    4. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    6. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    7. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    8. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
    9. Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    10. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    11. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    12. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.
    13. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
    14. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    15. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    16. Zhao, Jinbao & Wang, Jian & Xing, Zhaomin & Luan, Xin & Jiang, Yang, 2018. "Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 119-135.
    17. Zhenjun Zhu & Jun Zeng & Xiaolin Gong & Yudong He & Shucheng Qiu, 2021. "Analyzing Influencing Factors of Transfer Passenger Flow of Urban Rail Transit: A New Approach Based on Nested Logit Model Considering Transfer Choices," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    18. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    19. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    20. Peng Guo & Yanling Sun & Qiyi Chen & Junrong Li & Zifei Liu, 2022. "The Impact of Rainfall on Urban Human Mobility from Taxi GPS Data," Sustainability, MDPI, vol. 14(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:463-:d:477179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.