IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10866-d1191559.html
   My bibliography  Save this article

Investigation of the Microenvironment, Land Cover Characteristics, and Social Vulnerability of Heat-Vulnerable Bus Stops in Knoxville, Tennessee

Author

Listed:
  • Sangwon Lee

    (College of Social Work, University of Tennessee, Knoxville, TN 37996, USA)

  • Jennifer M. First

    (College of Social Work, University of Tennessee, Knoxville, TN 37996, USA)

Abstract

The urban heat island is a climate, public health, and environmental justice issue. Sustainable urban infrastructure needs improvements in public transport to protect citizens’ health from the urban heat island. This case study investigates the local microenvironment and social vulnerability of heat-vulnerable bus stops in Knoxville, Tennessee, using publicly available data from a variety of sources. These included ground and satellite measurements of heat and humidity from the Knoxville Heat Mapping Campaign, characteristics of land surface from the National Land Cover Dataset 2019 of the United States Geological Survey, and the 2018 Social Vulnerability Index from the U.S. Centers for Disease Control and Prevention. A geographic information system and a principal component analysis were used to identify social vulnerability in areas where the bus stops are located. The results show that most heat-vulnerable bus stops are poor microenvironments without trees and shelters. The hottest bus stops are concentrated in the highly developed and densely populated areas of West Knoxville and downtown Knoxville and in South, North, Northeast, and Northwest Knoxville, which are relatively high vulnerability clustered and have poor public infrastructure. The findings provide the foundation for mitigation strategies to better prepare local communities for climate change by identifying public transportation areas negatively impacted by the urban heat island.

Suggested Citation

  • Sangwon Lee & Jennifer M. First, 2023. "Investigation of the Microenvironment, Land Cover Characteristics, and Social Vulnerability of Heat-Vulnerable Bus Stops in Knoxville, Tennessee," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10866-:d:1191559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustafa Hamurcu & Tamer Eren, 2020. "Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making," Sustainability, MDPI, vol. 12(9), pages 1-24, April.
    2. Dongying Li & Galen D Newman & Bev Wilson & Yue Zhang & Robert D Brown, 2022. "Modeling the relationships between historical redlining, urban heat, and heat-related emergency department visits: An examination of 11 Texas cities," Environment and Planning B, , vol. 49(3), pages 933-952, March.
    3. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    4. Sangwon Lee & Jennifer M. First, 2022. "Mental Health Impacts of Tornadoes: A Systematic Review," IJERPH, MDPI, vol. 19(21), pages 1-12, October.
    5. Jennifer M. First & Kelsey Ellis & Mary Lehman Held & Florence Glass, 2021. "Identifying Risk and Resilience Factors Impacting Mental Health among Black and Latinx Adults following Nocturnal Tornadoes in the U.S. Southeast," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    6. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    3. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    4. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    5. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    6. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    7. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    8. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    9. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    10. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    11. Rio Yonson & Ilan Noy & JC Gaillard, 2018. "The measurement of disaster risk: An example from tropical cyclones in the Philippines," Review of Development Economics, Wiley Blackwell, vol. 22(2), pages 736-765, May.
    12. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    13. Muhammad Suhail Rizwan & Asifa Obaid & Dawood Ashraf, 2017. "The Impact of Corporate Social Responsibility on Default Risk: Empirical evidence from US Firms," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 9(3), pages 36-70, September.
    14. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    15. Abdollahzadeh, Gholamhossein & Sharifzadeh, Mohammad Sharif & Sklenička, Petr & Azadi, Hossein, 2023. "Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach," Agricultural Systems, Elsevier, vol. 204(C).
    16. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    17. Maximiliano Oportus & Rodrigo Cienfuegos & Alejandro Urrutia & Rafael Aránguiz & Patricio A. Catalán & Matías A. Hube, 2020. "Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 367-406, August.
    18. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    19. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    20. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10866-:d:1191559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.