IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v337y2024i1d10.1007_s10479-024-05900-1.html
   My bibliography  Save this article

A semi-supervised multi-criteria sorting approach to constructing social vulnerability composite indicators

Author

Listed:
  • Renata Pelissari

    (UNICAMP
    UNICAMP
    Mackenzie Presbyterian University)

  • Sarah Ben Amor

    (University of Ottawa)

  • Álvaro Oliveira D’Antona

    (UNICAMP)

  • Eduardo José Marandola Júnior

    (UNICAMP)

  • Leonardo Tomazeli Duarte

    (UNICAMP)

Abstract

IPVS (São Paulo Social Vulnerability index) was created by the State government of São Paulo, Brazil, with the identification and spatial location of the areas that contain the population segments most vulnerable to poverty. IPVS relies on a data-driven approach which is implemented by means of multivariate analysis techniques such as principal component analysis. A limitation of such a statistical approach is that it only considers information brought by data, as it does not take into consideration subjective information provided by decision makers. Motivated by this limitation, we propose an alternative approach based on multi-criteria sorting. For this purpose, we introduce a conceptual sorting framework based on the SMAA methodology and on the Choquet integral, which allows us to take into consideration interactions between criteria. The proposed sorting scheme classifies the municipality regions into groups characterized by reference values previously defined by the decision maker. As an important result, we show that our proposal provides more flexibility for vulnerability analysis in the sense that it allows decision makers to delve into different scenarios, opening the way for customized decision strategies.

Suggested Citation

  • Renata Pelissari & Sarah Ben Amor & Álvaro Oliveira D’Antona & Eduardo José Marandola Júnior & Leonardo Tomazeli Duarte, 2024. "A semi-supervised multi-criteria sorting approach to constructing social vulnerability composite indicators," Annals of Operations Research, Springer, vol. 337(1), pages 235-260, June.
  • Handle: RePEc:spr:annopr:v:337:y:2024:i:1:d:10.1007_s10479-024-05900-1
    DOI: 10.1007/s10479-024-05900-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05900-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05900-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    2. Cristina Davino & Marco Gherghi & Silvia Sorana & Domenico Vistocco, 2021. "Measuring Social Vulnerability in an Urban Space Through Multivariate Methods and Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 157(3), pages 1179-1201, October.
    3. Lahdelma, Risto & Salminen, Pekka, 2002. "Pseudo-criteria versus linear utility function in stochastic multi-criteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 141(2), pages 454-469, September.
    4. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    5. Koen Decancq & María Ana Lugo, 2013. "Weights in Multidimensional Indices of Wellbeing: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 32(1), pages 7-34, January.
    6. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    7. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    8. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    9. Ruiling Sun & Zaiwu Gong & Weiwei Guo & Ashfaq Ahmad Shah & Jie Wu & Haiying Xu, 2022. "Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 475-500, May.
    10. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    11. McCullagh, Peter, 1984. "Generalized linear models," European Journal of Operational Research, Elsevier, vol. 16(3), pages 285-292, June.
    12. Jaya Krishnakumar & A. Nagar, 2008. "On Exact Statistical Properties of Multidimensional Indices Based on Principal Components, Factor Analysis, MIMIC and Structural Equation Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 86(3), pages 481-496, May.
    13. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    14. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    15. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    16. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    17. Raffaele Lagravinese & Paolo Liberati & Giuliano Resce, 2020. "Measuring Health Inequality in US: A Composite Index Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(3), pages 921-946, February.
    18. Rahimi-Golkhandan, Armin & Aslani, Babak & Mohebbi, Shima, 2022. "Predictive resilience of interdependent water and transportation infrastructures: A sociotechnical approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    19. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    20. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    21. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    22. M. Saisana & A. Saltelli & S. Tarantola, 2005. "Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 307-323, March.
    23. Balaei, Behrooz & Noy, Ilan & Wilkinson, Suzanne & Potangaroa, Regan, 2021. "Economic factors affecting water supply resilience to disasters," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    24. Abioye, Olumide F. & Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren & Boot, Walter R. & Sando, Thobias, 2020. "Assessing perceived driving difficulties under emergency evacuation for vulnerable population groups," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    25. Slaviša Dumnić & Katarina Mostarac & Milena Ninović & Bojan Jovanović & Sandra Buhmiler, 2022. "Application of the Choquet Integral: A Case Study on a Personnel Selection Problem," Sustainability, MDPI, vol. 14(9), pages 1-39, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    2. Giuliano Resce & Fritz Schiltz, 2021. "Sustainable Development in Europe: A Multicriteria Decision Analysis," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(2), pages 509-529, June.
    3. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    4. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    5. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    6. Zhang, Xinwei & Yan, Yong & Wang, Lilin & Wang, Yang, 2024. "A ranking approach for robust portfolio decision analysis based on multilinear portfolio utility functions and incomplete preference information," Omega, Elsevier, vol. 122(C).
    7. Paolo Liberati & Giuliano Resce, 2022. "Regional Well-Being and its Inequality in the OECD Member Countries," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(3), pages 671-700, September.
    8. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    9. Paolo Liberati & Giuliano Resce & Francesca Tosi, 2023. "The probability of multidimensional poverty: A new approach and an empirical application to EU‐SILC data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 668-700, September.
    10. Raffaele Lagravinese & Paolo Liberati & Giuliano Resce, 2020. "Measuring Health Inequality in US: A Composite Index Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(3), pages 921-946, February.
    11. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    12. Giuseppe Coco & Raffaele Lagravinese & Giuliano Resce, 2020. "Beyond the weights: a multicriteria approach to evaluate inequality in education," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(4), pages 469-489, December.
    13. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    14. Brunelli, Matteo & Corrente, Salvatore, 2024. "Modeling criteria and project interactions in portfolio decision analysis with the Choquet integral," Omega, Elsevier, vol. 126(C).
    15. Cantone, Giulio Giacomo & Tomaselli, Venera, 2024. "On the Coherence of Composite Indexes: Multiversal Model and Specification Analysis for an Index of Well-Being," MetaArXiv d5y26, Center for Open Science.
    16. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "The Ordinal Input for Cardinal Output Approach of Non-compensatory Composite Indicators: The PROMETHEE Scoring Method," MPRA Paper 95816, University Library of Munich, Germany.
    17. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2021. "The ordinal input for cardinal output approach of non-compensatory composite indicators: the PROMETHEE scoring method," European Journal of Operational Research, Elsevier, vol. 288(1), pages 225-246.
    18. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    19. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    20. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:337:y:2024:i:1:d:10.1007_s10479-024-05900-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.