IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p712-d134900.html
   My bibliography  Save this article

Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data

Author

Listed:
  • Tobias Scholz

    (Department of Geography, Landscape Ecology & Biogeography, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany)

  • Angela Hof

    (Research Group Urban & Landscape Ecology, Department of Geography and Geology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria)

  • Thomas Schmitt

    (Department of Geography, Landscape Ecology & Biogeography, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany)

Abstract

The provision of ecosystem services by urban trees is not yet routinely integrated in city administrations’ planting scenarios because the quantification of these services is often time-consuming and expensive. Accounting for these welfare functions can enhance life quality for city dwellers. We present innovative approaches that may appeal to the numerous city administrations that keep tree inventory or cadastre databases of all trees growing on city property for civil law liability reasons. Mining these ubiquitous data can be a feasible alternative to field surveys and improve cost–benefit ratios for ecosystem service assessment. We present methods showing how data gaps (in particular tree height and crown light exposure) in the cadastre data can be filled to estimate ecosystem services with i-Tree Eco. Furthermore, we used the i-Tree Eco output for a noval approach which focus on predicting energy reduction as a proxy for cooling benefits provided by trees. The results for the total publicly owned and managed street trees in our study site of Duisburg (Germany) show that the most important ecosystem services are the removal of particulate matter by 16% of the city emissions and the reduction of 58% of the direct and thermal radiation in the effective range of the trees in the cadastre.

Suggested Citation

  • Tobias Scholz & Angela Hof & Thomas Schmitt, 2018. "Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:712-:d:134900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    2. Kronenberg, Jakub, 2015. "Why not to green a city? Institutional barriers to preserving urban ecosystem services," Ecosystem Services, Elsevier, vol. 12(C), pages 218-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Badach & Małgorzata Dymnicka & Jarosław Załęcki & Maciej Brosz & Dimitri Voordeckers & Maarten Van Acker, 2021. "Exploring the Institutional and Bottom-Up Actions for Urban Air Quality Improvement: Case Studies in Antwerp and Gdańsk," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    2. Denise Boehnke & Alice Krehl & Kai Mörmann & Rebekka Volk & Thomas Lützkendorf & Elias Naber & Ronja Becker & Stefan Norra, 2022. "Mapping Urban Green and Its Ecosystem Services at Microscale—A Methodological Approach for Climate Adaptation and Biodiversity," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
    3. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    4. David Martin & Sidney Swearingen, 2019. "Improving Environmental Justice Analysis of Urban Tree Ecosystem Services: A Case Study from Asheville, NC," Working Papers 19-01, Davidson College, Department of Economics.
    5. Corey Flude & Alexandra Ficht & Frydda Sandoval & Eric Lyons, 2022. "Development of an Urban Turfgrass and Tree Carbon Calculator for Northern Temperate Climates," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    6. Yanxia Hu & Changqing Wang & Jingjing Li, 2023. "Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China," Land, MDPI, vol. 12(5), pages 1-21, April.
    7. Arerut Yarnvudhi & Nisa Leksungnoen & Pantana Tor-Ngern & Aerwadee Premashthira & Sathid Thinkampheang & Sutheera Hermhuk, 2021. "Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    8. Hua Huang & Daizhong Su & Wenjie Peng & You Wu, 2020. "Development of a Mobile Application System for Eco-Accounting," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    9. Szkop Zbigniew, 2022. "The value of air purification and carbon storage ecosystem services of park trees in Warsaw, Poland," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Ling Chui & Jim, C.Y., 2022. "Urban-greenery demands are affected by perceptions of ecosystem services and disservices, and socio-demographic and environmental-cultural factors," Land Use Policy, Elsevier, vol. 120(C).
    2. Yu, Zhaowu & Chen, Tingting & Yang, Gaoyuan & Sun, Ranhao & Xie, Wei & Vejre, Henrik, 2020. "Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics," Applied Energy, Elsevier, vol. 264(C).
    3. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    4. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Bayarmaa Enkhbold & Kenichi Matsui, 2022. "A Study on Policy and Institutional Arrangements for Urban Green Space Development in Ulaanbaatar, Mongolia," Land, MDPI, vol. 11(12), pages 1-15, December.
    6. Cécile Hérivaux & Philippe Le Coent, 2021. "Introducing Nature into Cities or Preserving Existing Peri-Urban Ecosystems? Analysis of Preferences in a Rapidly Urbanizing Catchment," Sustainability, MDPI, vol. 13(2), pages 1-34, January.
    7. Oleg Sizov & Roman Fedorov & Yulia Pechkina & Vera Kuklina & Maxim Michugin & Andrey Soromotin, 2022. "Urban Trees in the Arctic City: Case of Nadym," Land, MDPI, vol. 11(4), pages 1-19, April.
    8. Zbigniew Szkop, 2017. "The problem of non-optimal management of urban green areas in Warsaw," Working Papers 2017-21, Faculty of Economic Sciences, University of Warsaw.
    9. Barbara Ester Adele Piga & Gabriele Stancato & Nicola Rainisio & Marco Boffi, 2021. "How Do Nature-Based Solutions’ Color Tones Influence People’s Emotional Reaction? An Assessment via Virtual and Augmented Reality in a Participatory Process," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    10. Biernacka, Magdalena & Kronenberg, Jakub & Łaszkiewicz, Edyta & Czembrowski, Piotr & Amini Parsa, Vahid & Sikorska, Daria, 2023. "Beyond urban parks: Mapping informal green spaces in an urban–peri-urban gradient," Land Use Policy, Elsevier, vol. 131(C).
    11. Yang, An-Shik & Juan, Yu-Hsuan & Wen, Chih-Yung & Chang, Chao-Jui, 2017. "Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park," Applied Energy, Elsevier, vol. 192(C), pages 178-200.
    12. Rouhollahi, Mina & Whaley, David & Behrend, Monica & Byrne, Josh & Boland, John, 2022. "The role of residential tree arrangement: A scoping review of energy efficiency in temperate to subtropical climate zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Giuseppe T. Cirella & Alessio Russo & Federico Benassi & Ernest Czermański & Anatoliy G. Goncharuk & Aneta Oniszczuk-Jastrzabek, 2021. "Energy Re-Shift for an Urbanizing World," Energies, MDPI, vol. 14(17), pages 1-22, September.
    14. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    15. Janina Borysiak & Małgorzata Stępniewska, 2022. "Perception of the Vegetation Cover Pattern Promoting Biodiversity in Urban Parks by Future Greenery Managers," Land, MDPI, vol. 11(3), pages 1-17, February.
    16. Ge, Mingwei & Zhang, Shuaibin & Meng, Hang & Ma, Hongliang, 2020. "Study on interaction between the wind-turbine wake and the urban district model by large eddy simulation," Renewable Energy, Elsevier, vol. 157(C), pages 941-950.
    17. Wei, Jin & Ni, Yang & Zhang, Yue-Jun, 2020. "The mitigation strategies for bottom environment of service-oriented public building from a micro-scale perspective: A case study in China," Energy, Elsevier, vol. 205(C).
    18. Kristian Fabbri & Jacopo Gaspari & Alessia Costa & Sofia Principi, 2022. "The Role of Architectural Skin Emissivity Influencing Outdoor Microclimatic Comfort: A Case Study in Bologna, Italy," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    19. Edyta Łaszkiewicz & Piotr Czembrowski & Jakub Kronenberg, 2020. "Creating a Map of the Social Functions of Urban Green Spaces in a City with Poor Availability of Spatial Data: A Sociotope for Lodz," Land, MDPI, vol. 9(6), pages 1-25, June.
    20. Endreny, T. & Santagata, R. & Perna, A. & Stefano, C. De & Rallo, R.F. & Ulgiati, S., 2017. "Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing," Ecological Modelling, Elsevier, vol. 360(C), pages 328-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:712-:d:134900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.