IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004603.html
   My bibliography  Save this article

Cool pavements for urban heat island mitigation: A synthetic review

Author

Listed:
  • Wang, Chenghao
  • Wang, Zhi-Hua
  • Kaloush, Kamil E.
  • Shacat, Joseph

Abstract

Urban heat island (UHI) effect poses great challenges to urban environmental quality, building energy consumption, and public health. Over decades, research efforts have been made to develop and evaluate different UHI mitigation strategies. Governments, organizations, and commercial companies have also been working to develop building codes, standards, and green rating systems to improve energy efficiency and urban sustainability. However, a lack of synergies between the research community, governments, organizations, and commercial companies may create knowledge gaps that can become a considerable obstacle to the implementation and effectiveness of UHI mitigation strategies. This study aims to synthetically review recent research advances, building codes and green rating systems, and urban implementation projects related to the use of cool pavements for UHI mitigation. In particular, we review efforts on reflective pavements, permeable pavements, and other innovative pavement strategies. Based on this synthetic review, we identify six gaps in existing cool pavement research and five gaps related to the implementation of cool pavements in building codes, standards, and municipal projects. We further provide recommendations and suggestions for each gap. Further efforts are needed to bridge these gaps, which will be critical to proactively coping with the negative impacts of the UHI effect and promoting more sustainable urban energy use.

Suggested Citation

  • Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004603
    DOI: 10.1016/j.rser.2021.111171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Žuvela-Aloise & R. Koch & S. Buchholz & B. Früh, 2016. "Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna," Climatic Change, Springer, vol. 135(3), pages 425-438, April.
    2. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    3. Pan, Pan & Wu, Shaopeng & Xiao, Yue & Liu, Gang, 2015. "A review on hydronic asphalt pavement for energy harvesting and snow melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 624-634.
    4. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    5. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    6. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    7. Li, Hui, 2012. "Evaluation of Cool Pavement Strategies for Heat Island Mitigation," Institute of Transportation Studies, Working Paper Series qt6mr4k9t1, Institute of Transportation Studies, UC Davis.
    8. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    9. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    10. Santero, Nicholas J. & Masanet, Eric & Horvath, Arpad, 2011. "Life-cycle assessment of pavements. Part I: Critical review," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 801-809.
    11. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    12. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    13. Jiang, Wei & Yuan, Dongdong & Xu, Shudong & Hu, Huitao & Xiao, Jingjing & Sha, Aimin & Huang, Yue, 2017. "Energy harvesting from asphalt pavement using thermoelectric technology," Applied Energy, Elsevier, vol. 205(C), pages 941-950.
    14. Rode, Philipp & Keim, Christian & Robazza, Guido & Viejo, Pablo & Schofield, James, 2014. "Cities and energy: urban morphology and residential heat-energy demand," LSE Research Online Documents on Economics 60778, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xinjie & Song, Jiyun & Wang, Chenghao & Chan, Pak Wai, 2022. "Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Zutao Ouyang & Pietro Sciusco & Tong Jiao & Sarah Feron & Cheyenne Lei & Fei Li & Ranjeet John & Peilei Fan & Xia Li & Christopher A. Williams & Guangzhao Chen & Chenghao Wang & Jiquan Chen, 2022. "Albedo changes caused by future urbanization contribute to global warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Caron, Simon & Garrido, Jorge & Ballestrín, Jesus & Sutter, Florian & Röger, Marc & Manzano-Agugliaro, Francisco, 2022. "A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    6. Luis Rodriguez-Lucas & Chen Ning & Marcelo Fajardo-Pruna & Yugui Yang, 2021. "Study of Vortex Systems as a Method to Weakening the Urban Heat Islands within the Financial District in Large Cities," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    7. Antonino D’Amico & Giuseppina Ciulla & Alessandro Buscemi & Domenico Panno & Michele Zinzi & Marco Beccali, 2022. "Road Thermal Collector for Building Heating in South Europe: Numerical Modeling and Design of an Experimental Set-Up," Energies, MDPI, vol. 15(2), pages 1-24, January.
    8. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Awais Piracha & Muhammad Tariq Chaudhary, 2022. "Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    10. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    2. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    3. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    4. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    5. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    6. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    7. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    8. Dai, Jiasheng & Ma, Feng & Fu, Zhen & Li, Chen & Jia, Meng & Shi, Ke & Wen, Yalu & Wang, Wentong, 2021. "Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement," Renewable Energy, Elsevier, vol. 175(C), pages 748-759.
    9. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    10. Yaning Qiao & Andrew R. Dawson & Tony Parry & Gerardo Flintsch & Wenshun Wang, 2020. "Flexible Pavements and Climate Change: A Comprehensive Review and Implications," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    11. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    12. Yaping Chen & Bohong Zheng & Yinze Hu, 2020. "Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    13. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    14. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    16. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    17. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    19. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    20. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.