IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121010868.html
   My bibliography  Save this article

A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings

Author

Listed:
  • Caron, Simon
  • Garrido, Jorge
  • Ballestrín, Jesus
  • Sutter, Florian
  • Röger, Marc
  • Manzano-Agugliaro, Francisco

Abstract

Solar thermal absorber coatings play a key role in the thermal efficiency of receivers for applications in the field of Concentrated Solar Power (CSP). The development of stable spectral selective coatings with a high solar absorptance αsol and a low thermal emittance εth is often desired to reduce thermal losses. However, quantitative indicators describing selectivity and the trade-off between solar absorptance and thermal emittance is seldom discussed in the literature.

Suggested Citation

  • Caron, Simon & Garrido, Jorge & Ballestrín, Jesus & Sutter, Florian & Röger, Marc & Manzano-Agugliaro, Francisco, 2022. "A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010868
    DOI: 10.1016/j.rser.2021.111818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garrido, Jorge & Aichmayer, Lukas & Abou-Taouk, Abdallah & Laumert, Björn, 2019. "Experimental and numerical performance analyses of Dish-Stirling cavity receivers: Radiative property study and design," Energy, Elsevier, vol. 169(C), pages 478-488.
    2. Gimeno-Furio, A. & Hernandez, L. & Martinez-Cuenca, R. & Mondragón, R. & Vela, A. & Cabedo, L. & Barreneche, C. & Iacob, M., 2020. "New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications," Renewable Energy, Elsevier, vol. 152(C), pages 1-8.
    3. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    5. Boubault, Antoine & Ho, Clifford K. & Hall, Aaron & Lambert, Timothy N. & Ambrosini, Andrea, 2016. "Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry," Renewable Energy, Elsevier, vol. 85(C), pages 472-483.
    6. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    7. García-Segura, A. & Sutter, F. & Martínez-Arcos, L. & Reche-Navarro, T.J. & Wiesinger, F. & Wette, J. & Buendía-Martínez, F. & Fernández-García, A., 2021. "Degradation types of reflector materials used in concentrating solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    10. Daniel Kraemer & Qing Jie & Kenneth McEnaney & Feng Cao & Weishu Liu & Lee A. Weinstein & James Loomis & Zhifeng Ren & Gang Chen, 2016. "Concentrating solar thermoelectric generators with a peak efficiency of 7.4%," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    11. Prieto, Cristina & Fereres, Sonia & Ruiz-Cabañas, Francisco Javier & Rodriguez-Sanchez, Alfonso & Montero, Cristina, 2020. "Carbonate molten salt solar thermal pilot facility: Plant design, commissioning and operation up to 700 °C," Renewable Energy, Elsevier, vol. 151(C), pages 528-541.
    12. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    13. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    15. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Zhang, Ke & Hao, Lei & Du, Miao & Mi, Jing & Wang, Ji-Ning & Meng, Jian-ping, 2017. "A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1282-1299.
    17. Marzo, Aitor & Salmon, Aloïs & Polo, Jesús & Ballestrín, Jesús & Soto, Gonzalo & Quiñones, Gonzalo & Alonso-Montesinos, Joaquín & Carra, Elena & Ibarra, Mercedes & Cardemil, José & Fuentealba, Edward , 2021. "Solar extinction map in Chile for applications in solar power tower plants, comparison with other places from sunbelt and impact on LCOE," Renewable Energy, Elsevier, vol. 170(C), pages 197-211.
    18. Bonk, Alexander & Braun, Markus & Sötz, Veronika A. & Bauer, Thomas, 2020. "Solar Salt – Pushing an old material for energy storage to a new limit," Applied Energy, Elsevier, vol. 262(C).
    19. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    20. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    21. García-Segura, A. & Fernández-García, A. & Ariza, M.J. & Sutter, F. & Valenzuela, L., 2016. "Durability studies of solar reflectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 453-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameh Monna & Ramez Abdallah & Adel Juaidi & Aiman Albatayneh & Antonio Jesús Zapata-Sierra & Francisco Manzano-Agugliaro, 2022. "Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation," Energies, MDPI, vol. 15(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    2. Stanek, Bartosz & Wang, Wujun & Bartela, Łukasz, 2023. "A potential solution in reducing the parabolic trough based solar industrial process heat system cost by partially replacing absorbers coatings with non-selective ones in initial loop sections," Applied Energy, Elsevier, vol. 331(C).
    3. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    4. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    5. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    6. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    7. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    8. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    9. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    10. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    11. Roldán, M.I. & Fernández-Reche, J. & Ballestrín, J., 2016. "Computational fluid dynamics evaluation of the operating conditions for a volumetric receiver installed in a solar tower," Energy, Elsevier, vol. 94(C), pages 844-856.
    12. El Kouche, Amal & Ortegón Gallego, Francisco, 2022. "Modeling and numerical simulation of a parabolic trough collector using an HTF with temperature dependent physical properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 430-451.
    13. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    14. Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
    15. Fernández-Torrijos, M. & González-Gómez, P.A. & Sobrino, C. & Santana, D., 2021. "Economic and thermo-mechanical design of tubular sCO2 central-receivers," Renewable Energy, Elsevier, vol. 177(C), pages 1087-1101.
    16. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    17. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Conroy, Tim & Collins, Maurice N. & Fisher, James & Grimes, Ronan, 2018. "Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy," Applied Energy, Elsevier, vol. 230(C), pages 590-614.
    20. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.