IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017366.html
   My bibliography  Save this article

The performance evaluation of the free-falling particle solar receiver with a novel zigzag mass-flow controlled particle release pattern

Author

Listed:
  • Wang, Kun
  • Li, Shen-Feng
  • Li, Yan-Fei
  • Yan, Peng-Yu
  • Zhang, Zhen-Dong
  • Min, Chun-Hua

Abstract

A free-falling particle receiver is a promising technology to be used in concentrating solar power plants. In this study, an optical-thermal coupled model is established by combining a Monte Carlo ray-tracing method with a finite volume method to simulate the energy transfer processes in a solar power tower system employing a cavity receiver. Using the developed model, a novel particle release pattern, zigzag mass-flow controlled pattern, is proposed and compared with three other patterns, straight-line, zigzag, and mass-flow controlled patterns. First, the effects of the amplitude of the zigzag particle release slots on the receiver performance are analyzed. Then, the variations of the solar energy entering the receiver at different times on the vernal equinox is studied. Moreover, a new particle release pattern, zigzag mass-flow controlled pattern, is proposed and evaluated. The results demonstrated that the thermal performance of the zigzag mass-flow controlled particle release pattern was found to be superior to the other three patterns, allowing an increase in the thermal efficiency of 2.90 %. This allows for achieving effective thermal performance improvements while employing cost-effective designs in the free-falling particle receiver.

Suggested Citation

  • Wang, Kun & Li, Shen-Feng & Li, Yan-Fei & Yan, Peng-Yu & Zhang, Zhen-Dong & Min, Chun-Hua, 2024. "The performance evaluation of the free-falling particle solar receiver with a novel zigzag mass-flow controlled particle release pattern," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017366
    DOI: 10.1016/j.renene.2023.119821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.