IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p496-d722181.html
   My bibliography  Save this article

Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation

Author

Listed:
  • Sameh Monna

    (Architectural Engineering Department, An-Najah National University, P.O. Box 7, Nablus 007, Palestine)

  • Ramez Abdallah

    (Mechanical &Mechatronics Engineering Department, An-Najah National University, P.O. Box 7, Nablus 007, Palestine)

  • Adel Juaidi

    (Mechanical &Mechatronics Engineering Department, An-Najah National University, P.O. Box 7, Nablus 007, Palestine)

  • Aiman Albatayneh

    (School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Antonio Jesús Zapata-Sierra

    (Department of Engineering, ceiA3, University of Almeria, 04120 Almeria, Spain)

  • Francisco Manzano-Agugliaro

    (Department of Engineering, ceiA3, University of Almeria, 04120 Almeria, Spain)

Abstract

Countries with limited natural resources and high energy prices, such as Jordan, face significant challenges concerning energy consumption and energy efficiency, particularly in the context of climate change. Residential buildings are the most energy-consuming sector in Jordan. Photovoltaic (PV) systems on the rooftops of residential buildings can solve the problem of increasing electricity demands and address the need for more sustainable energy systems. This study calculated the potential electricity production from PV systems installed on the available rooftops of residential buildings and compared this production with current and future electricity consumption for residential households. A simulation tool using PV*SOL 2021 was used to estimate electricity production and a comparative method was used to compare electricity production and consumption. The results indicated that electricity production from PV systems installed on single houses and villas can cover, depending on the tilt angle and location of the properties, three to eight times their estimated future and current electricity use. PV installation on apartment buildings can cover 0.65 to 1.3 times their future and current electricity use. The surplus electricity produced can be used to mitigate urban energy demands and achieve energy sustainability.

Suggested Citation

  • Sameh Monna & Ramez Abdallah & Adel Juaidi & Aiman Albatayneh & Antonio Jesús Zapata-Sierra & Francisco Manzano-Agugliaro, 2022. "Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation," Energies, MDPI, vol. 15(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:496-:d:722181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    3. Sameh Monna & Adel Juaidi & Ramez Abdallah & Aiman Albatayneh & Patrick Dutournie & Mejdi Jeguirim, 2021. "Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine," Energies, MDPI, vol. 14(13), pages 1-13, June.
    4. Caron, Simon & Garrido, Jorge & Ballestrín, Jesus & Sutter, Florian & Röger, Marc & Manzano-Agugliaro, Francisco, 2022. "A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah & Raed M. Abendeh & Rami Alawneh, 2023. "ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations," Energies, MDPI, vol. 16(13), pages 1-24, June.
    2. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    2. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    5. Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    6. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    7. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    8. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    9. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    10. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    11. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    12. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    13. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    14. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    15. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    16. Montoya, Francisco G. & García-Cruz, Amós & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2016. "Power quality techniques research worldwide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 846-856.
    17. Read, Laura & Madani, Kaveh & Mokhtari, Soroush & Hanks, Catherine, 2017. "Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty," Energy, Elsevier, vol. 119(C), pages 744-753.
    18. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    19. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1, January.
    20. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:496-:d:722181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.