IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125001715.html
   My bibliography  Save this article

Unlocking the potential of rooftop photovoltaic power generation for healthcare in Bangladesh

Author

Listed:
  • Kowsar, Abu
  • Saha, Shemanto
  • Naima, Foyzunnesa
  • Palash, Mujib L.
  • Faruque, Md Jamal
  • Lasker, Goutam Kumar
  • Haque, Nawshad
  • Alam, Firoz

Abstract

Healthcare services in urban and ‘difficult-to-access’ areas in developing countries suffer enormously due to an unreliable grid-connected electric power supply. Implementing rooftop mini- and microgrid photovoltaic (PV) systems presents a promising solution to the current power challenges. Prior to the deployment of photovoltaic systems, estimating PV generation potential and conducting comprehensive techno-economic studies is of paramount importance. The primary goal of this pioneering study is to assess the total rooftop photovoltaic electric power generation potential in public healthcare facilities using PVsyst and HOMER. This research bridges a significant gap in renewable energy assessment for the country's medical infrastructure by conducting an analysis of healthcare facilities, a first in this field. The percentage of power generation capability utilizing the ArcGIS-determined restricted rooftop space of the primary, secondary, and tertiary level hospitals has been estimated with the capital expenditure (CAPEX), operating expenditure (OPEX), levelized cost of power (LCOE), payback period, and related economic metrics, as well as CO2 emissions. The cumulative PV system size is determined to be around 90 MW (MW), sourcing from 663 micro- and mini-grid PV systems installed on the roofs of 663 public hospitals. The public healthcare sector's collective power generation potential is 124,835 MWh, and the demand amounted to 158,420 MWh. The PV system can meet 79 % of the total electric power requirement. Notably, this study provides a holistic approach to establishing a net-metering-supported micro- and mini-grid system for uninterrupted power supply to healthcare premises.

Suggested Citation

  • Kowsar, Abu & Saha, Shemanto & Naima, Foyzunnesa & Palash, Mujib L. & Faruque, Md Jamal & Lasker, Goutam Kumar & Haque, Nawshad & Alam, Firoz, 2025. "Unlocking the potential of rooftop photovoltaic power generation for healthcare in Bangladesh," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001715
    DOI: 10.1016/j.renene.2025.122509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
    2. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    3. Li Ji & Zhenwei Yu & Jing Ma & Limin Jia & Fuwei Ning, 2020. "The Potential of Photovoltaics to Power the Railway System in China," Energies, MDPI, vol. 13(15), pages 1-17, July.
    4. Thapar, Sapan, 2022. "Centralized vs decentralized solar: A comparison study (India)," Renewable Energy, Elsevier, vol. 194(C), pages 687-704.
    5. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    6. Ghaleb, Belal & Asif, Muhammad, 2022. "Assessment of solar PV potential in commercial buildings," Renewable Energy, Elsevier, vol. 187(C), pages 618-630.
    7. Izadi, Ali & Shahafve, Masoomeh & Ahmadi, Pouria & Hanafizadeh, Pedram, 2023. "Design, and optimization of COVID-19 hospital wards to produce Oxygen and electricity through solar PV panels with hydrogen storage systems by neural network-genetic algorithm," Energy, Elsevier, vol. 263(PA).
    8. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    9. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2018. "Effects of ambient temperatures, tilt angles, and orientations on hybrid photovoltaic/diesel systems under equatorial climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2625-2636.
    10. Kazi Sifatul Islam & Samiul Hasan & Tamal Chowdhury & Hemal Chowdhury & Sadiq M. Sait, 2022. "Outage Survivability Investigation of a PV/Battery/CHP System in a Hospital Building in Texas," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    11. Sameh Monna & Ramez Abdallah & Adel Juaidi & Aiman Albatayneh & Antonio Jesús Zapata-Sierra & Francisco Manzano-Agugliaro, 2022. "Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation," Energies, MDPI, vol. 15(2), pages 1-15, January.
    12. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    2. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    3. Rund Awwad & Scott Dwyer & Andrea Trianni, 2025. "Unpacking Market Barriers to Energy Efficiency in Emerging Economies: Policy Insights and a Business Model Perspective from Jordan," Energies, MDPI, vol. 18(11), pages 1-26, June.
    4. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    7. Abdulrahman AlKassem & Azeddine Draou & Abdullah Alamri & Hisham Alharbi, 2022. "Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    8. Ehtisham Lodhi & Fei-Yue Wang & Gang Xiong & Ghulam Ali Mallah & Muhammad Yaqoob Javed & Tariku Sinshaw Tamir & David Wenzhong Gao, 2021. "A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    9. Cruz, Talita & Schaeffer, Roberto & Lucena, André F.P. & Melo, Sérgio & Dutra, Ricardo, 2020. "Solar water heating technical-economic potential in the household sector in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1618-1639.
    10. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    11. Senatla, Mamahloko & Bansal, Ramesh C. & Naidoo, Raj M. & Mbungu, Nsilulu T. & Yusuf, Teslim & Bredenkamp, Barry, 2025. "Increasing the deployment of solar PV in the commercial sector in South Africa: Buildings as assets for energy transition," Renewable Energy, Elsevier, vol. 239(C).
    12. McCloskey, PJ & Malheiros Remor, Rodrigo, 2025. "The approach for Abu Dhabi’s solar energy: Centralised or Decentralised," MPRA Paper 124740, University Library of Munich, Germany, revised 13 May 2025.
    13. Mohammadi, Zahra & Ahmadi, Pouria & Ashjaee, Mehdi, 2024. "Comparative transient assessment and optimization of battery and hydrogen energy storage systems for near-zero energy buildings," Renewable Energy, Elsevier, vol. 220(C).
    14. Zhang, Tingsheng & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2024. "A portable balloon integrated photovoltaic system deployed at low altitude," Energy, Elsevier, vol. 313(C).
    15. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    16. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    17. Mohammed Kharrich & Salah Kamel & Mohamed H. Hassan & Salah K. ElSayed & Ibrahim B. M. Taha, 2021. "An Improved Heap-Based Optimizer for Optimal Design of a Hybrid Microgrid Considering Reliability and Availability Constraints," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    18. Park, Jiseon & Yang, Won & Jung, Sooho & Lee, Hyeongseok & Hong, Jongsup & Lee, Yongwoon & Kim, Seongil, 2024. "Assessment of energy self-sufficiency of a smart farm through integrated modeling of air-source heat pumps and solar power generation," Applied Energy, Elsevier, vol. 367(C).
    19. Zuo, Zhaoyang & Basem, Ali & Hussein, Zahraa Abed & Sharma, Kamal & Dixit, Saurav & Alanazi, Yousef Mohammed & El-Shafay, A.S., 2025. "Enhanced near zero-energy building performance through intelligent hydrogen storage management across diverse climates," Energy, Elsevier, vol. 327(C).
    20. Reza Maleki & Mohammadreza Taghizadeh-Yazdi & Rohollah Ghasemi & Samar Rivandi, 2024. "A Hybrid Mathematical-Simulation Approach to Hospital Beds Capacity Optimization for COVID-19 Pandemic Conditions," SN Operations Research Forum, Springer, vol. 5(4), pages 1-33, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.