IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v344y2023ics0306261923006219.html
   My bibliography  Save this article

A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging

Author

Listed:
  • Davoudkhani, Iraj Faraji
  • Dejamkhooy, Abdolmajid
  • Nowdeh, Saber Arabi

Abstract

This paper performs a new optimal framework for a hybrid photovoltaic-wind system design integrated with battery storage (PV/WT/Battery), considering cloud-based uncertainty modeling and battery degradation based on real meteorological data from the Sarein-Ardabil region in Iran. The objective function is presented as minimizing the total net present cost (NPC), load loss, and battery degradation cost. The decision variables include the number of PVs, WTs, batteries, inverter power, and the angle of PVs installation, which is optimally determined via a new meta-heuristic optimization algorithm named opposition-based learning and Gradient-based optimizer (OBLGBO). In the proposed framework, the cloud theory method based on combining fuzzy theory and probability statistics has been applied for modeling the energy resources and load demand uncertainties. The simulation results indicate that considering battery degradation costs increases the overall cost of designing hybrid systems. As the cost of degradation increases, reliability indices improve due to an increase in the number of wind turbines and a decrease in the number of batteries. Also, the results demonstrated that incorporating the uncertainties based on the cloud theory increases the design cost, and the system reliability is weakened. Therefore, the proposed optimal framework has presented a real and accurate approach to the optimal design of energy systems with more accurate knowledge of electricity generation costs and the cost of improving reliability in conditions of uncertainties. Moreover, the superior capability of the OBLGBO compared with traditional GBO and the well-known particle swarm optimization (PSO) and grey wolf optimizer (GWO) is proved to achieve lower design cost and better reliability indices.

Suggested Citation

  • Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
  • Handle: RePEc:eee:appene:v:344:y:2023:i:c:s0306261923006219
    DOI: 10.1016/j.apenergy.2023.121257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923006219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    2. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
    3. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    4. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    5. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    6. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    7. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    8. Hosseini, Farzad & Safari, Amin & Farrokhifar, Meisam, 2020. "Cloud theory-based multi-objective feeder reconfiguration problem considering wind power uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 1130-1139.
    9. Gharavi, H. & Ardehali, M.M. & Ghanbari-Tichi, S., 2015. "Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions," Renewable Energy, Elsevier, vol. 78(C), pages 427-437.
    10. Bakhshi, Reza & Sadeh, Javad & Mosaddegh, Hamid-Reza, 2014. "Optimal economic designing of grid-connected photovoltaic systems with multiple inverters using linear and nonlinear module models based on Genetic Algorithm," Renewable Energy, Elsevier, vol. 72(C), pages 386-394.
    11. Fares, Dalila & Fathi, Mohamed & Mekhilef, Saad, 2022. "Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system," Applied Energy, Elsevier, vol. 305(C).
    12. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    13. Mohamed, Mohamed A. & Eltamaly, Ali M. & Alolah, Abdulrahman I., 2017. "Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 515-524.
    14. Naderipour, Amirreza & Kamyab, Hesam & Klemeš, Jiří Jaromír & Ebrahimi, Reza & Chelliapan, Shreeshivadasan & Nowdeh, Saber Arabi & Abdullah, Aldrin & Hedayati Marzbali, Massoomeh, 2022. "Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission," Energy, Elsevier, vol. 257(C).
    15. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    16. Askarzadeh, Alireza, 2017. "Distribution generation by photovoltaic and diesel generator systems: Energy management and size optimization by a new approach for a stand-alone application," Energy, Elsevier, vol. 122(C), pages 542-551.
    17. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Mirjalili, Seyedali, 2020. "Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system," Renewable Energy, Elsevier, vol. 153(C), pages 1330-1345.
    18. Zhang, Ge & Shi, Yong & Maleki, Akbar & A. Rosen, Marc, 2020. "Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach," Renewable Energy, Elsevier, vol. 156(C), pages 1203-1214.
    19. Sun, Hongyue & Ebadi, Abdol Ghaffar & Toughani, Mohsen & Nowdeh, Saber Arabi & Naderipour, Amirreza & Abdullah, Aldrin, 2022. "Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm," Energy, Elsevier, vol. 238(PA).
    20. Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
    21. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    22. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    23. Huang, Ke-Long & Li, Xiao-gang & Liu, Su-qin & Tan, Ning & Chen, Li-quan, 2008. "Research progress of vanadium redox flow battery for energy storage in China," Renewable Energy, Elsevier, vol. 33(2), pages 186-192.
    24. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zulfiqar Ali Memon & Mohammad Amin Akbari, 2023. "Optimizing Hybrid Photovoltaic/Battery/Diesel Microgrids in Distribution Networks Considering Uncertainty and Reliability," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Ali Hadi Abdulwahid & Muna Al-Razgan & Hassan Falah Fakhruldeen & Meryelem Tania Churampi Arellano & Vedran Mrzljak & Saber Arabi Nowdeh & Mohammad Jafar Hadidian Moghaddam, 2023. "Stochastic Multi-Objective Scheduling of a Hybrid System in a Distribution Network Using a Mathematical Optimization Algorithm Considering Generation and Demand Uncertainties," Mathematics, MDPI, vol. 11(18), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naderipour, Amirreza & Kamyab, Hesam & Klemeš, Jiří Jaromír & Ebrahimi, Reza & Chelliapan, Shreeshivadasan & Nowdeh, Saber Arabi & Abdullah, Aldrin & Hedayati Marzbali, Massoomeh, 2022. "Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission," Energy, Elsevier, vol. 257(C).
    2. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    3. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
    5. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    6. Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
    7. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    8. Hadidian Moghaddam, Mohammad Jafar & Kalam, Akhtar & Nowdeh, Saber Arabi & Ahmadi, Abdollah & Babanezhad, Manoochehr & Saha, Sajeeb, 2019. "Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 1412-1434.
    9. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    10. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    11. Jing Yang & Jiale Xiong & Yen-Lin Chen & Por Lip Yee & Chin Soon Ku & Manoochehr Babanezhad, 2023. "Improved Golden Jackal Optimization for Optimal Allocation and Scheduling of Wind Turbine and Electric Vehicles Parking Lots in Electrical Distribution Network Using Rosenbrock’s Direct Rotation Strat," Mathematics, MDPI, vol. 11(6), pages 1-23, March.
    12. Singh, Poonam & Pandit, Manjaree & Srivastava, Laxmi, 2023. "Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique," Energy, Elsevier, vol. 269(C).
    13. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2023. "Innovative hybridization of the two-archive and PROMETHEE-II triple-objective and multi-criterion decision making for optimum configuration of the hybrid renewable energy system," Applied Energy, Elsevier, vol. 341(C).
    14. Das, Barun K. & Hasan, Mahmudul, 2021. "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat," Energy, Elsevier, vol. 214(C).
    15. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    16. Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
    17. Mohammadali Kiehbadroudinezhad & Adel Merabet & Ahmed G. Abo-Khalil & Tareq Salameh & Chaouki Ghenai, 2022. "Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review," Energies, MDPI, vol. 15(9), pages 1-21, May.
    18. Güven, Aykut Fatih & Yörükeren, Nuran & Samy, Mohamed Mahmoud, 2022. "Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches," Energy, Elsevier, vol. 253(C).
    19. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    20. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:344:y:2023:i:c:s0306261923006219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.