IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225015865.html
   My bibliography  Save this article

Study on the solar-thermal effect mechanism and energy balance relationship of heat-reflective pavement model in cold region

Author

Listed:
  • Wang, Jiwei
  • Zhao, Jingde
  • Xu, Xiangtian
  • Zhang, Mingyi
  • Liu, Yuhang
  • Bai, Ruiqiang
  • Wang, Yongtao
  • Kong, Xiangbing

Abstract

Against the backdrop of global warming and accelerated urbanization, the proliferation of dark asphalt pavements has exacerbated urban heat island effects and highway damage in cold regions. Heat-reflective pavement, a promising cooling pavement technology, has yet to be systematically studied in terms of experimental models, solar-thermal mechanisms, and energy balance. Relevant studies are still relatively scarce in typical cold regions. This paper attempts to address this gap by conducting experimental and theoretical analyses of heat-reflective pavements in typical cold regions. The findings reveal significant seasonal and climatic variations in the solar-thermal characteristics of these pavements. Heat-reflective pavements notably reduce the maximum, annual average, and amplitude of temperature and heat flux in asphalt surfaces, as well as the N-factor variation. Increasing pavement albedo from 0.05 to 0.78 results in a reduction of the annual average temperature and heat flux by approximately 4 °C and 12 W/m2. Furthermore, heat-reflective coatings significantly modify the energy balance of pavement surface, including the magnitudes, patterns, and proportions of heat exchanges. A new simple method for determining the upper thermal boundary conditions of heat-reflective pavements is proposed. The research results provide data accumulation and theoretical support for mitigating urban heat island effects and improving the thermal stability of permafrost embankments.

Suggested Citation

  • Wang, Jiwei & Zhao, Jingde & Xu, Xiangtian & Zhang, Mingyi & Liu, Yuhang & Bai, Ruiqiang & Wang, Yongtao & Kong, Xiangbing, 2025. "Study on the solar-thermal effect mechanism and energy balance relationship of heat-reflective pavement model in cold region," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015865
    DOI: 10.1016/j.energy.2025.135944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225015865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Florian A. Schneider & Johny Cordova Ortiz & Jennifer K. Vanos & David J. Sailor & Ariane Middel, 2023. "Evidence-based guidance on reflective pavement for urban heat mitigation in Arizona," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Qin, Yinghong & Zhang, Mingyi & Hiller, Jacob E., 2017. "Theoretical and experimental studies on the daily accumulative heat gain from cool roofs," Energy, Elsevier, vol. 129(C), pages 138-147.
    3. Zheng, Tianhong & Qu, Ke & Darkwa, Jo & Calautit, John Kaiser, 2022. "Evaluating urban heat island mitigation strategies for a subtropical city centre (a case study in Osaka, Japan)," Energy, Elsevier, vol. 250(C).
    4. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    5. Mingyuan Mao & Jinfei Wei & Bucheng Li & Lingxiao Li & Xiaopeng Huang & Junping Zhang, 2024. "Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Sharma, Ajit & Lee, Byeong-Kyu, 2017. "Energy savings and reduction of CO2 emission using Ca(OH)2 incorporated zeolite as an additive for warm and hot mix asphalt production," Energy, Elsevier, vol. 136(C), pages 142-150.
    8. Ma, Qinguo & Luo, Xiaoxiao & Gao, Jianqiang & Sun, Weiyu & Li, Yongdong & Lan, Tianli, 2022. "Numerical evaluation for cooling performance of a composite measure on expressway embankment with shady and sunny slopes in permafrost regions," Energy, Elsevier, vol. 244(PB).
    9. Guy Doré & Fujun Niu & Heather Brooks, 2016. "Adaptation Methods for Transportation Infrastructure Built on Degrading Permafrost," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 27(4), pages 352-364, October.
    10. Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Jin, Long & Wang, Chong & Li, Guanji, 2023. "Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions," Energy, Elsevier, vol. 283(C).
    11. Yang, Wei & Zhang, Mingyi & Pei, Wansheng & You, Zhilang & Wang, Jiwei & Liu, Weibo & Chen, Lin & Li, Guanji, 2024. "Experimental study on the thermal performance of non-white near-infrared solar reflective coatings in a permafrost region," Renewable Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    2. Zhuo, Sheng & Zhou, Wenwu & Fang, Ping & Ye, Jianyong & Luo, Haoze & Li, Hejun & Wu, Changzi & Chen, Weifan & Liu, Yue, 2024. "Cost-effective pearlescent pigments with high near-infrared reflectance and outstanding energy-saving ability for mitigating urban heat island effect," Applied Energy, Elsevier, vol. 353(PA).
    3. Sun, Zhaohui & Liu, Jiankun & You, Tian & Ren, Zhifeng & Chang, Dan & Fang, Jianhong & Vladislav, Isaev, 2024. "Field test study on thermal performance of a novel embankment using solar refrigeration technology," Renewable Energy, Elsevier, vol. 226(C).
    4. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    5. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Lv, Ruidong & Zha, Xudong & Hu, Hengwu & Lei, Bingbing & Niu, Chao, 2025. "A review on the influencing factors of solar pavement power generation efficiency," Applied Energy, Elsevier, vol. 379(C).
    9. Cao, Yapeng & Li, Guoyu & Ma, Wei & Wu, Gang & Chen, Zhixiang & Wang, Buxiang & Gao, Kai & Chen, Dun & Du, Qingsong & Jing, Hongyuan & Zhang, Zhenrong, 2024. "Thaw bulb formation surrounding warm-oil pipelines and evaluation of the cooling performance of a new air convection pipeline embankment structure," Energy, Elsevier, vol. 293(C).
    10. Huang, Xinjie & Song, Jiyun & Wang, Chenghao & Chan, Pak Wai, 2022. "Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Kruczek, Tadeusz, 2023. "Conditions for use of long-wave infrared camera to measure the temperature of the sky," Energy, Elsevier, vol. 283(C).
    12. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    14. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Yinghong Qin & Tianyu Wang & Weixin Yuan, 2023. "Wind-driven device for cooling permafrost," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Paolo Peluso & Giovanni Persichetti & Laura Moretti, 2022. "Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    17. Zueter, Ahmad F. & Sasmito, Agus P., 2023. "Cold energy storage as a solution for year-round renewable artificial ground freezing: Case study of the Giant Mine Remediation Project," Renewable Energy, Elsevier, vol. 203(C), pages 664-676.
    18. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Ramezanizadeh, Mahdi & Ahmadi, Mohammad Hossein & Nazari, Mohammad Alhuyi & Sadeghzadeh, Milad & Chen, Lingen, 2019. "A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Mauro Guglielmin & Stefano Ponti & Emanuele Forte & Nicoletta Cannone, 2021. "Recent thermokarst evolution in the Italian Central Alps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 299-317, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.