IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223019588.html
   My bibliography  Save this article

Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions

Author

Listed:
  • Zhou, Yanqiao
  • Zhang, Mingyi
  • Pei, Wansheng
  • Jin, Long
  • Wang, Chong
  • Li, Guanji

Abstract

Numerous studies have been conducted to investigate the thermal stability of crushed rock embankments (CREs). In this study, we developed an automatic field monitoring system for a CRE during the construction of the Gonghe–Yushu High-grade Highway (GYHH) to explore both the convective cooling and the deformation controlling effect of the crushed rock layer (CRL). We evaluated the thermal-deformation performance of a the CRL based on the long-term field monitoring data. The results reveal that the upper peat layer could slow down the degradation of shallow permafrost. However, the heat absorbed by the black asphalt pavement significantly contributed to the degradation of the permafrost beneath the contrast embankment without the CRL. The CRL had an obvious cooling effect range for the shallow stratum, where an effective cooling zone formed (about 4 m deep in the 4th year after the construction of embankment). Nevertheless, deep permafrost beyond this effective cooling range continued to warm owing to the downward heat flux. Consequently, the total settlement of the CRE decreased by 23% compared with the contrast embankment in the 5th year. This work is expected to provide a reference for the design of the CREs in permafrost regions.

Suggested Citation

  • Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Jin, Long & Wang, Chong & Li, Guanji, 2023. "Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019588
    DOI: 10.1016/j.energy.2023.128564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    2. Shuangjie Wang & Fujun Niu & Jianbing Chen & Yuanhong Dong, 2020. "Permafrost research in China related to express highway construction," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 406-416, July.
    3. Jan Hjort & Olli Karjalainen & Juha Aalto & Sebastian Westermann & Vladimir E. Romanovsky & Frederick E. Nelson & Bernd Etzelmüller & Miska Luoto, 2018. "Degrading permafrost puts Arctic infrastructure at risk by mid-century," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Zhang, Mingyi & Zhang, Xiyin & Li, Shuangyang & Wu, Daoyong & Pei, Wansheng & Lai, Yuanming, 2015. "Evaluating the cooling performance of crushed-rock interlayer embankments with unperforated and perforated ventilation ducts in permafrost regions," Energy, Elsevier, vol. 93(P1), pages 874-881.
    5. S. E. Chadburn & E. J. Burke & P. M. Cox & P. Friedlingstein & G. Hugelius & S. Westermann, 2017. "An observation-based constraint on permafrost loss as a function of global warming," Nature Climate Change, Nature, vol. 7(5), pages 340-344, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    2. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    3. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    4. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).
    5. Ma, Qinguo & Luo, Xiaoxiao & Gao, Jianqiang & Sun, Weiyu & Li, Yongdong & Lan, Tianli, 2022. "Numerical evaluation for cooling performance of a composite measure on expressway embankment with shady and sunny slopes in permafrost regions," Energy, Elsevier, vol. 244(PB).
    6. Guanfu Wang & Jiajun Bi & Youkai Fan & Long Zhu & Feng Zhang & Decheng Feng, 2022. "Settlement Characteristic of Warm Permafrost Embankment with Two-Phase Closed Thermosyphons in Daxing’anling Mountains Region," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    7. Libo Wu & Fujun Niu & Zhanju Lin & Yunhu Shang & Sanjay Nimbalkar & Daichao Sheng, 2023. "Experimental and Numerical Analyses on the Frost Heave Deformation of Reclaimed Gravel from a Tunnel Excavation as a Structural Fill in Cold Mountainous Regions," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    8. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    9. Alyona A. Shestakova & Alexander N. Fedorov & Yaroslav I. Torgovkin & Pavel Y. Konstantinov & Nikolay F. Vasyliev & Svetlana V. Kalinicheva & Vera V. Samsonova & Tetsuya Hiyama & Yoshihiro Iijima & Ho, 2021. "Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS," Land, MDPI, vol. 10(5), pages 1-18, April.
    10. Tatiana S. Degai & Natalia Khortseva & Maria Monakhova & Andrey N. Petrov, 2021. "Municipal Programs and Sustainable Development in Russian Northern Cities: Case Studies of Murmansk and Magadan," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    11. Frederique Bordignon, 2021. "A scientometric review of permafrost research based on textual analysis (1948–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 417-436, January.
    12. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    13. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    14. Yinghong Qin & Tianyu Wang & Weixin Yuan, 2023. "Wind-driven device for cooling permafrost," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Zueter, Ahmad F. & Sasmito, Agus P., 2023. "Cold energy storage as a solution for year-round renewable artificial ground freezing: Case study of the Giant Mine Remediation Project," Renewable Energy, Elsevier, vol. 203(C), pages 664-676.
    16. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    17. Nathan S. Debortoli & Tristan D. Pearce & James D. Ford, 2023. "Estimating Future Costs for Infrastructure in the Proposed Canadian Northern Corridor at Risk From Climate Change," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 16(6), March.
    18. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. N. A. Serova & V. A. Serova, 2021. "Transport Infrastructure of the Russian Arctic: Specifics Features and Development Prospects," Studies on Russian Economic Development, Springer, vol. 32(2), pages 214-220, March.
    20. B. N. Porfiriev & D. O. Eliseev, 2023. "Scenario Forecasts of Expected Damage from Permafrost Degradation: Regional and Industry Issues," Studies on Russian Economic Development, Springer, vol. 34(5), pages 651-659, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.