IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v31y2020i3p406-416.html
   My bibliography  Save this article

Permafrost research in China related to express highway construction

Author

Listed:
  • Shuangjie Wang
  • Fujun Niu
  • Jianbing Chen
  • Yuanhong Dong

Abstract

Express highways are roads of high speed, large capacity, and transportation flexibility. The network of express highways in China has been developed over the last 30 years to accommodate the needs of a growing population and to facilitate economic development. Part of the network is in permafrost regions, where the construction and maintenance of these roads present significant engineering challenges due to permafrost degradation induced by climate warming and by construction. This paper summarizes the engineering problems encountered in the construction and maintenance of these express highways, and the mitigation techniques used to overcome them on new transportation projects in permafrost regions. Ten types of engineering problems along the Qinghai‐Tibet Highway, the oldest and longest highway in the permafrost regions of China are identified. Their main cause is related to permafrost degradation in the subgrade beneath the road subbase. Settlement of the highway embankment due to thaw consolidation of degrading permafrost is the dominant mechanical distress observed. Mitigation techniques, mainly for enhancing heat convection beneath express highways, are discussed along with their effects. Research in China related to transportation projects may provide a reference for future express highway design and construction in permafrost regions around the world.

Suggested Citation

  • Shuangjie Wang & Fujun Niu & Jianbing Chen & Yuanhong Dong, 2020. "Permafrost research in China related to express highway construction," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 406-416, July.
  • Handle: RePEc:wly:perpro:v:31:y:2020:i:3:p:406-416
    DOI: 10.1002/ppp.2053
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2053
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingyi Zhang & Wansheng Pei & Xiyin Zhang & Jianguo Lu, 2015. "Lateral thermal disturbance of embankments in the permafrost regions of the Qinghai-Tibet Engineering Corridor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2121-2142, September.
    2. Dongqing Li & Jin Chen & Qingzhou Meng & Dengke Liu & Jianhong Fang & Jiankun Liu, 2008. "Numeric simulation of permafrost degradation in the eastern Tibetan Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(1), pages 93-99, January.
    3. Z. Lin & C. R. Burn & F. Niu & J. Luo & M. Liu & G. Yin, 2015. "The Thermal Regime, including a Reversed Thermal Offset, of Arid Permafrost Sites with Variations in Vegetation Cover Density, Wudaoliang Basin, Qinghai‐Tibet Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 26(2), pages 142-159, April.
    4. Guy Doré & Fujun Niu & Heather Brooks, 2016. "Adaptation Methods for Transportation Infrastructure Built on Degrading Permafrost," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 27(4), pages 352-364, October.
    5. Jiankun Liu & Bowen Tai & Jianhong Fang, 2019. "Ground temperature and deformation analysis for an expressway embankment in warm permafrost regions of the Tibet plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 30(3), pages 208-221, July.
    6. Huijun Jin & Qihao Yu & Lanzhi Lü & Dongxin Guo & Ruixia He & Shaopeng Yu & Guangyou Sun & Yingwu Li, 2007. "Degradation of permafrost in the Xing'anling Mountains, northeastern China," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(3), pages 245-258, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    2. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    3. Guanfu Wang & Jiajun Bi & Youkai Fan & Long Zhu & Feng Zhang & Decheng Feng, 2022. "Settlement Characteristic of Warm Permafrost Embankment with Two-Phase Closed Thermosyphons in Daxing’anling Mountains Region," Sustainability, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    2. Zhichao Xu & Wei Shan & Ying Guo & Chengcheng Zhang & Lisha Qiu, 2022. "Swamp Wetlands in Degraded Permafrost Areas Release Large Amounts of Methane and May Promote Wildfires through Friction Electrification," Sustainability, MDPI, vol. 14(15), pages 1-28, July.
    3. Zhe Cheng & Zhilong Zhang & Guang Liu & Ying Wu, 2023. "Study on the Effect of Non-Linear Ventilation Pipe Composite Measures on the Slope Permafrost Subgrade," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    4. Hao Wang & Lun Ji & Hongju Zhang & Yuqi Lou & Linlin Xu & Yiqiu Tan, 2023. "Indicator Construction of Road Surface Deformation Activity in Cold Regions and Its Relationship with the Distribution and Development of Longitudinal Cracks," Sustainability, MDPI, vol. 15(21), pages 1-16, October.
    5. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    6. Vladislav Isaev & Arata Kioka & Pavel Kotov & Dmitrii O. Sergeev & Alexandra Uvarova & Andrey Koshurnikov & Oleg Komarov, 2022. "Multi-Parameter Protocol for Geocryological Test Site: A Case Study Applied for the European North of Russia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    7. Yandong, Hou & Qingbai, Wu & Kaige, Wang & Zeguo, Ye, 2020. "Numerical evaluation for protecting and reinforcing effect of a new designed crushed rock revetment on Qinghai–Tibet Railway," Renewable Energy, Elsevier, vol. 156(C), pages 645-654.
    8. Yinghong Qin & Tianyu Wang & Weixin Yuan, 2023. "Wind-driven device for cooling permafrost," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Chengcheng Zhang & Wei Shan & Shuai Liu & Ying Guo & Lisha Qiu, 2023. "Simulation of Spatiotemporal Distribution and Variation of 30 m Resolution Permafrost in Northeast China from 2003 to 2021," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    10. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).
    11. Mauro Guglielmin & Stefano Ponti & Emanuele Forte & Nicoletta Cannone, 2021. "Recent thermokarst evolution in the Italian Central Alps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 299-317, April.
    12. Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.
    13. Christopher R. Burn, 2020. "Transactions of the International Permafrost Association Number 3," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 343-345, July.
    14. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    15. Xiaoxu Yang & Yuming Liu & Kai Liu & Guangzhong Hu & Xi Zhao, 2022. "Research on Promotion and Application Strategy of Electric Equipment in Plateau Railway Tunnel Based on Evolutionary Game," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    16. Guanfu Wang & Jiajun Bi & Youkai Fan & Long Zhu & Feng Zhang & Decheng Feng, 2022. "Settlement Characteristic of Warm Permafrost Embankment with Two-Phase Closed Thermosyphons in Daxing’anling Mountains Region," Sustainability, MDPI, vol. 14(19), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:31:y:2020:i:3:p:406-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.