IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004407.html
   My bibliography  Save this article

Thaw bulb formation surrounding warm-oil pipelines and evaluation of the cooling performance of a new air convection pipeline embankment structure

Author

Listed:
  • Cao, Yapeng
  • Li, Guoyu
  • Ma, Wei
  • Wu, Gang
  • Chen, Zhixiang
  • Wang, Buxiang
  • Gao, Kai
  • Chen, Dun
  • Du, Qingsong
  • Jing, Hongyuan
  • Zhang, Zhenrong

Abstract

The first China-Russia crude oil pipeline (CRCOP-I) and the second China-Russia crude oil pipeline (CRCOP-II) went into operation in January 2011 and January 2018, respectively. On-site monitoring data have indicated that the seasonal thawing depth (STD) of a borehole 2 m away from CRCOP-I reached 10.8 m by the end of 2021. To improve mitigation measures of thaw settlement, an inverted T-shaped crushed-rock pipeline embankment (ITCPE) is proposed in this study. The long-term thermal activity of three types of pipeline embankments is predicted and compared with the underground structure. This study finds that none of the current pipeline structures has solved the thaw settlement issue for the CRCOP, whether with insulation layers, in an unprotected pipeline embankment (UPE), or in a traditional horizontal crushed-rock pipeline embankment (THCPE). However, the cross-ventilation attained in the proposed approach did mitigate thawing. It is estimated that after 50 years of operation, the natural permafrost table will be 2.9 m deep, whereas the proposed ITCPE central pipeline embankment could maintain the artificial permafrost table at a depth of 0.7 m. This study provides technical support for the CRCOP and provides a reference for the design and maintenance of other pipeline projects in permafrost areas worldwide.

Suggested Citation

  • Cao, Yapeng & Li, Guoyu & Ma, Wei & Wu, Gang & Chen, Zhixiang & Wang, Buxiang & Gao, Kai & Chen, Dun & Du, Qingsong & Jing, Hongyuan & Zhang, Zhenrong, 2024. "Thaw bulb formation surrounding warm-oil pipelines and evaluation of the cooling performance of a new air convection pipeline embankment structure," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004407
    DOI: 10.1016/j.energy.2024.130668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.