IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v178y2025i5d10.1007_s10584-025-03942-3.html
   My bibliography  Save this article

Permafrost degradation-induced risks for nature-based tourism in the Arctic – case from the Yukon

Author

Listed:
  • Eirini Makopoulou

    (University of Oulu)

  • Alix Varnajot

    (University of Oulu)

Abstract

Permafrost degradation is one of the most significant consequences of climate change in the Arctic. During summers, permafrost degradation is evident with cryospheric hazards like retrogressive thaw slumps (RTSs) and active layer detachment slides (ALDs). In parallel, the Arctic has become a popular tourist destination for nature-based activities, with summer being the peak touristic season. In this context, cryospheric hazards pose potential risks for tourists’ presence in Arctic national parks and wilderness in general, like in the Yukon. This essay provides the basis for investigating further periglacial, geomorphological and tourism intersections, highlighting the critical need for future interdisciplinary research on thawing permafrost impacts. More so, this requires moving beyond the predominant focus on permafrost impacts on infrastructure and to also consider the direct threats posed to human physical presence in Arctic tourist destinations affected by permafrost degradation. Such interdisciplinary approach is critical not only to mitigate risks, but also to provide policy- and decision-makers with valuable insights for implementing measures and guidelines.

Suggested Citation

  • Eirini Makopoulou & Alix Varnajot, 2025. "Permafrost degradation-induced risks for nature-based tourism in the Arctic – case from the Yukon," Climatic Change, Springer, vol. 178(5), pages 1-9, May.
  • Handle: RePEc:spr:climat:v:178:y:2025:i:5:d:10.1007_s10584-025-03942-3
    DOI: 10.1007/s10584-025-03942-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-025-03942-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-025-03942-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Antoni G. Lewkowicz & Robert G. Way, 2019. "Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
    3. In-Won Kim & Axel Timmermann & Ji-Eun Kim & Keith B. Rodgers & Sun-Seon Lee & Hanna Lee & William R. Wieder, 2024. "Abrupt increase in Arctic-Subarctic wildfires caused by future permafrost thaw," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jan Hjort & Olli Karjalainen & Juha Aalto & Sebastian Westermann & Vladimir E. Romanovsky & Frederick E. Nelson & Bernd Etzelmüller & Miska Luoto, 2018. "Degrading permafrost puts Arctic infrastructure at risk by mid-century," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Boris K. Biskaborn & Sharon L. Smith & Jeannette Noetzli & Heidrun Matthes & Gonçalo Vieira & Dmitry A. Streletskiy & Philippe Schoeneich & Vladimir E. Romanovsky & Antoni G. Lewkowicz & Andrey Abramo, 2019. "Permafrost is warming at a global scale," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongwei Wang & Huijun Jin & Tao Che & Xiaoying Li & Liyun Dai & Yuan Qi & Chunlin Huang & Ruixia He & Jinlong Zhang & Rui Yang & Dongliang Luo & Xiaoying Jin, 2024. "Influences of Snow Cover on the Thermal Regimes of Xing'an Permafrost in Northeast China in 1960s–2010s," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 35(2), pages 188-201, April.
    2. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    3. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    4. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    5. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Christopher R. Burn & Annett Bartsch & Elora Chakraborty & Soumik Das & Regula Frauenfelder & Isabelle Gärtner‐Roer & Kjersti G. Gisnås & Teddi Herring & Benjamin M. Jones & Steven V. Kokelj & Moritz , 2025. "Developments in Permafrost Science and Engineering in Response to Climate Warming in Circumpolar and High Mountain Regions, 2019–2024," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(2), pages 167-188, June.
    7. Joshua R. Thienpont & Claire O'Hagan & Steven V. Kokelj & Grace N. Hoskin & Michael F. J. Pisaric & John P. Smol & Emily Stewart & Jennifer B. Korosi, 2025. "A Framework for Understanding the Impacts of Thaw‐Driven Disturbance Regimes on Northern Lakes," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(1), pages 137-150, January.
    8. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    9. Heidrun Matthes & Adrien Damseaux & Sebastian Westermann & Christian Beer & Aaron Boone & Eleanor Burke & Bertrand Decharme & Hélène Genet & Elchin Jafarov & Moritz Langer & Frans‐Jan Parmentier & Phi, 2025. "Advances in Permafrost Representation: Biophysical Processes in Earth System Models and the Role of Offline Models," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(2), pages 302-318, June.
    10. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. N. A. Serova & V. A. Serova, 2021. "Transport Infrastructure of the Russian Arctic: Specifics Features and Development Prospects," Studies on Russian Economic Development, Springer, vol. 32(2), pages 214-220, March.
    12. B. N. Porfiriev & D. O. Eliseev, 2023. "Scenario Forecasts of Expected Damage from Permafrost Degradation: Regional and Industry Issues," Studies on Russian Economic Development, Springer, vol. 34(5), pages 651-659, October.
    13. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    14. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Ying Guo & Shuai Liu & Lisha Qiu & Chengcheng Zhang & Wei Shan, 2024. "Spatial stratified heterogeneity analysis of field scale permafrost in Northeast China based on optimal parameters-based geographical detector," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-22, February.
    16. Jinting Guo & Yuanman Hu & Zaiping Xiong & Xiaolu Yan & Chunlin Li & Rencang Bu, 2017. "Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    17. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    18. Ionut Cristi Nicu & Knut Stalsberg & Lena Rubensdotter & Vibeke Vandrup Martens & Anne-Cathrine Flyen, 2020. "Coastal Erosion Affecting Cultural Heritage in Svalbard. A Case Study in Hiorthhamn (Adventfjorden)—An Abandoned Mining Settlement," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    19. Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 99(C), pages 93-112.
    20. Clare B Gaffey & Narissa Bax & Naomi Krauzig & Kévin Tougeron, 2024. "A call to strengthen international collaboration to assess climate change effects in polar regions," PLOS Climate, Public Library of Science, vol. 3(10), pages 1-25, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:178:y:2025:i:5:d:10.1007_s10584-025-03942-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.