IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32629-x.html
   My bibliography  Save this article

Current Siberian heating is unprecedented during the past seven millennia

Author

Listed:
  • Rashit M. Hantemirov

    (Ural Division of the Russian Academy of Sciences
    Ural Federal University)

  • Christophe Corona

    (University of Geneva
    Université Clermont Auvergne
    University of Geneva)

  • Sébastien Guillet

    (University of Geneva)

  • Stepan G. Shiyatov

    (Ural Division of the Russian Academy of Sciences)

  • Markus Stoffel

    (University of Geneva
    University of Geneva
    University of Geneva)

  • Timothy J. Osborn

    (University of East Anglia)

  • Thomas M. Melvin

    (University of East Anglia)

  • Ludmila A. Gorlanova

    (Ural Division of the Russian Academy of Sciences)

  • Vladimir V. Kukarskih

    (Ural Division of the Russian Academy of Sciences
    Ural Federal University)

  • Alexander Y. Surkov

    (Ural Division of the Russian Academy of Sciences)

  • Georg Arx

    (Swiss Federal Research Institute WSL
    University of Bern)

  • Patrick Fonti

    (Swiss Federal Research Institute WSL)

Abstract

The Arctic is warming faster than any other region on Earth. Putting this rapid warming into perspective is challenging because instrumental records are often short or incomplete in polar regions and precisely-dated temperature proxies with high temporal resolution are largely lacking. Here, we provide this long-term perspective by reconstructing past summer temperature variability at Yamal Peninsula – a hotspot of recent warming – over the past 7638 years using annually resolved tree-ring records. We demonstrate that the recent anthropogenic warming interrupted a multi-millennial cooling trend. We find the industrial-era warming to be unprecedented in rate and to have elevated the summer temperature to levels above those reconstructed for the past seven millennia (in both 30-year mean and the frequency of extreme summers). This is undoubtedly of concern for the natural and human systems that are being impacted by climatic changes that lie outside the envelope of natural climatic variations for this region.

Suggested Citation

  • Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32629-x
    DOI: 10.1038/s41467-022-32629-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32629-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32629-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(11), pages 852-857, November.
    2. Jeremiah Marsicek & Bryan N. Shuman & Patrick J. Bartlein & Sarah L. Shafer & Simon Brewer, 2018. "Reconciling divergent trends and millennial variations in Holocene temperatures," Nature, Nature, vol. 554(7690), pages 92-96, February.
    3. B. Teufel & L. Sushama, 2019. "Abrupt changes across the Arctic permafrost region endanger northern development," Nature Climate Change, Nature, vol. 9(11), pages 858-862, November.
    4. Trevor J. Porter & Spruce W. Schoenemann & Lauren J. Davies & Eric J. Steig & Sasiri Bandara & Duane G. Froese, 2019. "Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Andrew Ciavarella & Daniel Cotterill & Peter Stott & Sarah Kew & Sjoukje Philip & Geert Jan Oldenborgh & Amalie Skålevåg & Philip Lorenz & Yoann Robin & Friederike Otto & Mathias Hauser & Sonia I. Sen, 2021. "Prolonged Siberian heat of 2020 almost impossible without human influence," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    6. Jan Nitzbon & Sebastian Westermann & Moritz Langer & Léo C. P. Martin & Jens Strauss & Sebastian Laboor & Julia Boike, 2020. "Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Sigrid Lind & Randi B. Ingvaldsen & Tore Furevik, 2018. "Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import," Nature Climate Change, Nature, vol. 8(7), pages 634-639, July.
    8. Chad W. Thackeray & Alex Hall, 2019. "An emergent constraint on future Arctic sea-ice albedo feedback," Nature Climate Change, Nature, vol. 9(12), pages 972-978, December.
    9. Jan Karlsson & Svetlana Serikova & Sergey N. Vorobyev & Gerard Rocher-Ros & Blaize Denfeld & Oleg S. Pokrovsky, 2021. "Carbon emission from Western Siberian inland waters," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Boris K. Biskaborn & Sharon L. Smith & Jeannette Noetzli & Heidrun Matthes & Gonçalo Vieira & Dmitry A. Streletskiy & Philippe Schoeneich & Vladimir E. Romanovsky & Antoni G. Lewkowicz & Andrey Abramo, 2019. "Permafrost is warming at a global scale," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    11. Jan Esper & David C. Frank & Mauri Timonen & Eduardo Zorita & Rob J. S. Wilson & Jürg Luterbacher & Steffen Holzkämper & Nils Fischer & Sebastian Wagner & Daniel Nievergelt & Anne Verstege & Ulf Büntg, 2012. "Orbital forcing of tree-ring data," Nature Climate Change, Nature, vol. 2(12), pages 862-866, December.
    12. Jan Hjort & Olli Karjalainen & Juha Aalto & Sebastian Westermann & Vladimir E. Romanovsky & Frederick E. Nelson & Bernd Etzelmüller & Miska Luoto, 2018. "Degrading permafrost puts Arctic infrastructure at risk by mid-century," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    13. Merritt R. Turetsky & Benjamin W. Abbott & Miriam C. Jones & Katey Walter Anthony & David Olefeldt & Edward A. G. Schuur & Charles Koven & A. David McGuire & Guido Grosse & Peter Kuhry & Gustaf Hugeli, 2019. "Permafrost collapse is accelerating carbon release," Nature, Nature, vol. 569(7754), pages 32-34, May.
    14. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Author Correction: Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(12), pages 1005-1005, December.
    15. Laura Landrum & Marika M. Holland, 2020. "Extremes become routine in an emerging new Arctic," Nature Climate Change, Nature, vol. 10(12), pages 1108-1115, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Strauss & Christina Biasi & Tina Sanders & Benjamin W. Abbott & Thomas Schneider Deimling & Carolina Voigt & Matthias Winkel & Maija E. Marushchak & Dan Kou & Matthias Fuchs & Marcus A. Horn & Lo, 2022. "A globally relevant stock of soil nitrogen in the Yedoma permafrost domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Shijie Liu & Chengqi Zhang & Tao Shen & Zidong Zhan & Jia Peng & Cunlong Yu & Lei Jiang & Zhichao Dong, 2023. "Efficient agricultural drip irrigation inspired by fig leaf morphology," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moritz Langer & Thomas Schneider Deimling & Sebastian Westermann & Rebecca Rolph & Ralph Rutte & Sofia Antonova & Volker Rachold & Michael Schultz & Alexander Oehme & Guido Grosse, 2023. "Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
    4. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    9. James E. Overland, 2021. "Rare events in the Arctic," Climatic Change, Springer, vol. 168(3), pages 1-13, October.
    10. Daniel J. Vecellio & Oliver W. Frauenfeld, 2022. "Surface and sub-surface drivers of autumn temperature increase over Eurasian permafrost," Climatic Change, Springer, vol. 172(1), pages 1-18, May.
    11. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    12. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    13. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Jens Strauss & Christina Biasi & Tina Sanders & Benjamin W. Abbott & Thomas Schneider Deimling & Carolina Voigt & Matthias Winkel & Maija E. Marushchak & Dan Kou & Matthias Fuchs & Marcus A. Horn & Lo, 2022. "A globally relevant stock of soil nitrogen in the Yedoma permafrost domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    17. Da Wei & Jing Tao & Zhuangzhuang Wang & Hui Zhao & Wei Zhao & Xiaodan Wang, 2024. "Elevation-dependent pattern of net CO2 uptake across China," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    20. N. A. Serova & V. A. Serova, 2021. "Transport Infrastructure of the Russian Arctic: Specifics Features and Development Prospects," Studies on Russian Economic Development, Springer, vol. 32(2), pages 214-220, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32629-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.