IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31597-6.html
   My bibliography  Save this article

Dispersal and fire limit Arctic shrub expansion

Author

Listed:
  • Yanlan Liu

    (The Ohio State University
    The Ohio State University)

  • William J. Riley

    (Lawrence Berkeley National Laboratory)

  • Trevor F. Keenan

    (Lawrence Berkeley National Laboratory
    University of California)

  • Zelalem A. Mekonnen

    (Lawrence Berkeley National Laboratory)

  • Jennifer A. Holm

    (Lawrence Berkeley National Laboratory)

  • Qing Zhu

    (Lawrence Berkeley National Laboratory)

  • Margaret S. Torn

    (Lawrence Berkeley National Laboratory)

Abstract

Arctic shrub expansion alters carbon budgets, albedo, and warming rates in high latitudes but remains challenging to predict due to unclear underlying controls. Observational studies and models typically use relationships between observed shrub presence and current environmental suitability (bioclimate and topography) to predict shrub expansion, while omitting shrub demographic processes and non-stationary response to changing climate. Here, we use high-resolution satellite imagery across Alaska and western Canada to show that observed shrub expansion has not been controlled by environmental suitability during 1984–2014, but can only be explained by considering seed dispersal and fire. These findings provide the impetus for better observations of recruitment and for incorporating currently underrepresented processes of seed dispersal and fire in land models to project shrub expansion and climate feedbacks. Integrating these dynamic processes with projected fire extent and climate, we estimate shrubs will expand into 25% of the non-shrub tundra by 2100, in contrast to 39% predicted based on increasing environmental suitability alone. Thus, using environmental suitability alone likely overestimates and misrepresents shrub expansion pattern and its associated carbon sink.

Suggested Citation

  • Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31597-6
    DOI: 10.1038/s41467-022-31597-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31597-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31597-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(11), pages 852-857, November.
    2. Sander Veraverbeke & Brendan M. Rogers & Mike L. Goulden & Randi R. Jandt & Charles E. Miller & Elizabeth B. Wiggins & James T. Randerson, 2017. "Lightning as a major driver of recent large fire years in North American boreal forests," Nature Climate Change, Nature, vol. 7(7), pages 529-534, July.
    3. Sarah C. Elmendorf & Gregory H. R. Henry & Robert D. Hollister & Robert G. Björk & Noémie Boulanger-Lapointe & Elisabeth J. Cooper & Johannes H. C. Cornelissen & Thomas A. Day & Ellen Dorrepaal & Tati, 2012. "Plot-scale evidence of tundra vegetation change and links to recent summer warming," Nature Climate Change, Nature, vol. 2(6), pages 453-457, June.
    4. Georges Kunstler & Daniel Falster & David A. Coomes & Francis Hui & Robert M. Kooyman & Daniel C. Laughlin & Lourens Poorter & Mark Vanderwel & Ghislain Vieilledent & S. Joseph Wright & Masahiro Aiba , 2016. "Plant functional traits have globally consistent effects on competition," Nature, Nature, vol. 529(7585), pages 204-207, January.
    5. T. F. Keenan & W. J. Riley, 2018. "Greening of the land surface in the world’s cold regions consistent with recent warming," Nature Climate Change, Nature, vol. 8(9), pages 825-828, September.
    6. Logan T. Berner & Richard Massey & Patrick Jantz & Bruce C. Forbes & Marc Macias-Fauria & Isla Myers-Smith & Timo Kumpula & Gilles Gauthier & Laia Andreu-Hayles & Benjamin V. Gaglioti & Patrick Burns , 2020. "Summer warming explains widespread but not uniform greening in the Arctic tundra biome," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Isla H. Myers-Smith & Jeffrey T. Kerby & Gareth K. Phoenix & Jarle W. Bjerke & Howard E. Epstein & Jakob J. Assmann & Christian John & Laia Andreu-Hayles & Sandra Angers-Blondin & Pieter S. A. Beck & , 2020. "Complexity revealed in the greening of the Arctic," Nature Climate Change, Nature, vol. 10(2), pages 106-117, February.
    8. Richard G. Pearson & Steven J. Phillips & Michael M. Loranty & Pieter S. A. Beck & Theodoros Damoulas & Sarah J. Knight & Scott J. Goetz, 2013. "Shifts in Arctic vegetation and associated feedbacks under climate change," Nature Climate Change, Nature, vol. 3(7), pages 673-677, July.
    9. Anne D. Bjorkman & Isla H. Myers-Smith & Sarah C. Elmendorf & Signe Normand & Nadja Rüger & Pieter S. A. Beck & Anne Blach-Overgaard & Daan Blok & J. Hans C. Cornelissen & Bruce C. Forbes & Damien Geo, 2018. "Plant functional trait change across a warming tundra biome," Nature, Nature, vol. 562(7725), pages 57-62, October.
    10. Finley, Andrew O. & Banerjee, Sudipto & Gelfand, Alan E., 2015. "spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i13).
    11. Michelle C. Mack & M. Syndonia Bret-Harte & Teresa N. Hollingsworth & Randi R. Jandt & Edward A. G. Schuur & Gaius R. Shaver & David L. Verbyla, 2011. "Carbon loss from an unprecedented Arctic tundra wildfire," Nature, Nature, vol. 475(7357), pages 489-492, July.
    12. Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Stefano Potter & Sarah M. Ludwig & Anne-Katrin Selbmann & Patrick F. Sullivan & Benjamin W. Abbott & Kyle A. Arndt & Leah Birch & Mats P. Bjö, 2019. "Author Correction: Large loss of CO2 in winter observed across the northern permafrost region," Nature Climate Change, Nature, vol. 9(12), pages 1005-1005, December.
    13. Isla H. Myers-Smith & Sarah C. Elmendorf & Pieter S. A. Beck & Martin Wilmking & Martin Hallinger & Daan Blok & Ken D. Tape & Shelly A. Rayback & Marc Macias-Fauria & Bruce C. Forbes & James D. M. Spe, 2015. "Climate sensitivity of shrub growth across the tundra biome," Nature Climate Change, Nature, vol. 5(9), pages 887-891, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Weiming Ma & Hailong Wang & Gang Chen & L. Ruby Leung & Jian Lu & Philip J. Rasch & Qiang Fu & Ben Kravitz & Yufei Zou & John J. Cassano & Wieslaw Maslowski, 2024. "The role of interdecadal climate oscillations in driving Arctic atmospheric river trends," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. David K Swanson, 2015. "Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-34, September.
    7. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
    10. Ronny Rotbarth & Egbert H. Nes & Marten Scheffer & Jane Uhd Jepsen & Ole Petter Laksforsmo Vindstad & Chi Xu & Milena Holmgren, 2023. "Northern expansion is not compensating for southern declines in North American boreal forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Jun Zhang & Xiao-Qian Li & Huan-Wen Peng & Lisi Hai & Andrey S. Erst & Florian Jabbour & Rosa del C. Ortiz & Fu-Cai Xia & Pamela S. Soltis & Douglas E. Soltis & Wei Wang, 2023. "Evolutionary history of the Arctic flora," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Rashit M. Hantemirov & Christophe Corona & Sébastien Guillet & Stepan G. Shiyatov & Markus Stoffel & Timothy J. Osborn & Thomas M. Melvin & Ludmila A. Gorlanova & Vladimir V. Kukarskih & Alexander Y. , 2022. "Current Siberian heating is unprecedented during the past seven millennia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Da Wei & Jing Tao & Zhuangzhuang Wang & Hui Zhao & Wei Zhao & Xiaodan Wang, 2024. "Elevation-dependent pattern of net CO2 uptake across China," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Yang Shu & Chunming Shi & Bole Yi & Pengwu Zhao & Lijuan Guan & Mei Zhou, 2022. "Influence of Climatic Factors on Lightning Fires in the Primeval Forest Region of the Northern Daxing’an Mountains, China," Sustainability, MDPI, vol. 14(9), pages 1-11, May.
    16. Floris M. Beest & Efrén López-Blanco & Lars H. Hansen & Niels M. Schmidt, 2023. "Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore," Climatic Change, Springer, vol. 176(4), pages 1-14, April.
    17. Lili Xu & Zhenfa Tu & Yuke Zhou & Guangming Yu, 2018. "Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    18. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    19. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    20. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31597-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.