IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v3y2013i7d10.1038_nclimate1858.html
   My bibliography  Save this article

Shifts in Arctic vegetation and associated feedbacks under climate change

Author

Listed:
  • Richard G. Pearson

    (Center for Biodiversity and Conservation, American Museum of Natural History)

  • Steven J. Phillips

    (AT&T Labs-Research)

  • Michael M. Loranty

    (Woods Hole Research Center
    Colgate University)

  • Pieter S. A. Beck

    (Woods Hole Research Center)

  • Theodoros Damoulas

    (Cornell University)

  • Sarah J. Knight

    (Center for Biodiversity and Conservation, American Museum of Natural History
    University of York
    Present address: Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK)

  • Scott J. Goetz

    (Woods Hole Research Center)

Abstract

This study shows that climate change could lead to a major redistribution of vegetation across the Arctic, with important implications for biosphere–atmosphere interactions, as well as for biodiversity conservation and ecosystem services. Woody vegetation is predicted to expand substantially over coming decades, causing more Arctic warming through positive climate feedbacks than previously thought.

Suggested Citation

  • Richard G. Pearson & Steven J. Phillips & Michael M. Loranty & Pieter S. A. Beck & Theodoros Damoulas & Sarah J. Knight & Scott J. Goetz, 2013. "Shifts in Arctic vegetation and associated feedbacks under climate change," Nature Climate Change, Nature, vol. 3(7), pages 673-677, July.
  • Handle: RePEc:nat:natcli:v:3:y:2013:i:7:d:10.1038_nclimate1858
    DOI: 10.1038/nclimate1858
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1858
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    3. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    4. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Jun Zhang & Xiao-Qian Li & Huan-Wen Peng & Lisi Hai & Andrey S. Erst & Florian Jabbour & Rosa del C. Ortiz & Fu-Cai Xia & Pamela S. Soltis & Douglas E. Soltis & Wei Wang, 2023. "Evolutionary history of the Arctic flora," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Alexey Maslakov & Larisa Zotova & Nina Komova & Mikhail Grishchenko & Dmitry Zamolodchikov & Gennady Zelensky, 2021. "Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change," Land, MDPI, vol. 10(5), pages 1-14, April.
    9. Didier G. Leibovici & Helena Bylund & Christer Björkman & Nikolay Tokarevich & Tomas Thierfelder & Birgitta Evengård & Shaun Quegan, 2021. "Associating Land Cover Changes with Patterns of Incidences of Climate-Sensitive Infections: An Example on Tick-Borne Diseases in the Nordic Area," IJERPH, MDPI, vol. 18(20), pages 1-27, October.
    10. Pawel Wasowicz & Andrzej Pasierbiński & Ewa Maria Przedpelska-Wasowicz & Hörður Kristinsson, 2014. "Distribution Patterns in the Native Vascular Flora of Iceland," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-14, July.
    11. David K Swanson, 2015. "Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-34, September.
    12. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    13. Li, Xi & Zheng, Yi & Sun, Zan & Tian, Yong & Zheng, Chunmiao & Liu, Jie & Liu, Shaomin & Xu, Ziwei, 2017. "An integrated ecohydrological modeling approach to exploring the dynamic interaction between groundwater and phreatophytes," Ecological Modelling, Elsevier, vol. 356(C), pages 127-140.
    14. Chunyang Liu & Chao Liu & Qianqian Sun & Tianyang Chen & Ya Fan, 2022. "Vegetation Dynamics and Climate from A Perspective of Lag-Effect: A Study Case in Loess Plateau, China," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    15. Lili Xu & Zhenfa Tu & Yuke Zhou & Guangming Yu, 2018. "Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets," Sustainability, MDPI, vol. 10(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:3:y:2013:i:7:d:10.1038_nclimate1858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.